Learn more about Search Results 彼のブログ
- You may be interested
- 🐶セーフテンソルは、本当に安全であり、...
- このAIニュースレターは、あなたが必要と...
- メタファーAPI:LLM向けに構築された革命...
- ヴァンダービルト大学とUCデービスからの...
- データサイエンスのためのLinux VMをスー...
- 「アジャイルな製品開発のためのAI主導の...
- LGBMClassifier 入門ガイド
- 「合成イメージングがAIトレーニングの効...
- エラスティックサーチでシノニムを便利に...
- Pythonコードの行数を100行未満で使用した...
- 現代のデータサイエンティストのための正...
- 「未来のコンピュータから秘密を守る競争」
- 「カスタムファインチューニングされた大...
- 「BERT vs GPT:NLPの巨人たちの比較」
- 「なぜデータパイプラインには閉ループフ...
AI(人工知能)の謎を解明:フォローすべきブロガーやライター
この記事では、注目すべき影響力のあるAIインフルエンサーや研究者、執筆者を紹介しています彼らの経歴、業績、AIの進歩に関する重要な洞察について学びましょう
大規模な言語モデルをマスターするための包括的な資源リスト
大規模言語モデル(LLM)は、さまざまなアプリケーションの重要な一部となりましたこの記事では、LLMの世界に飛び込みたいと思う人々のための豊富な情報源のリストを提供しています
『ダフニーを使用してラストのアルゴリズムを正式に検証するための9つのルール(パート2)』
ラストアルゴリズム開発における数学的確実性を解き放つDafnyを使用してRustアルゴリズムを正式に検証するための9つの基本ルールを学び、レンジセットブレイズクレートをケーススタディとして使用します今日、より高いコード信頼性を実現しましょう
「メーカーに会う ロボット学生がNVIDIA Jetsonを搭載した自律型車椅子を発表する」
AIの助けを借りて、ロボット、トラクターやベビーカー、さらにはスケートパークさえも自律化しています。Kabilan KBという開発者は、障害を持つ人々の移動性を向上させるため、車椅子に自律航行機能を組み込んでいます。 このインドのコーヤンバトールのカルニヤ工科大学の学部生は、エッジAIとロボティクスのためにNVIDIA Jetsonプラットフォームを使用して、自律車椅子プロジェクトを進めています。 この自律型電動車椅子には、デプスセンサーやLiDARセンサー、さらにはUSBカメラが接続されており、環境を認識し、ユーザーの目的地への障害物のない経路を計画することができます。 “自動車椅子を使用する人は、移動先の場所を指示することができます。それは自律航法システムにすでにプログラムされているか、割り当てられた数値とともに経路が計画されているかもしれません。たとえば、キッチンに移動したい場合は「1」を押し、寝室に移動したい場合は「2」を押せば、自律型車椅子がそこに連れて行ってくれます。”とKBは述べています。 NVIDIA Jetson Nano Developer Kitは、カメラやセンサーからのデータをリアルタイムで処理します。そして、深層学習ベースのコンピュータビジョンモデルを使用して、環境中の障害物を検出します。 この開発キットは自律システムの脳として機能し、周囲の2Dマップを生成し、目的地への衝突のない経路を計画し、途中で安全なナビゲーションを確保するために、電動車椅子に更新された信号を送信します。 メーカーについて KBは機械工学の経験を持っており、パンデミック中にAIとロボットに魅了されました。その際、彼は自由な時間を使って教育的なYouTube動画を検索しました。 現在、彼はカルニヤ工科大学でロボットとオートメーションの学士号を取得するための勉学に励み、将来的にはロボットのスタートアップを立ち上げたいと考えています。 自己教育の支持者と自称するKBは、NVIDIA Deep Learning Instituteから「Jetson Nanoでエッジ上のビデオAIアプリケーションを構築する」や「Omniverseで拡張可能な開発、カスタマイズ、公開をする」など多くの認証を受けています。 ロボット技術の基礎を学んだ後、彼はNVIDIA Omniverseでシミュレーションを試み始めました。NVIDIA Omniverseは、OpenUSDフレームワークに基づいて3Dツールやアプリケーションを構築・運用するためのプラットフォームです。 “シミュレーションのためにOmniverseを使用すると、ロボットのプロトタイプモデルの大規模な投資をする必要がありません。代わりに、合成データ生成を使用することができます。それは将来のソフトウェアです。”と彼は話しています。…
「カタストロフィックな忘却を防ぎつつ、タスクに微調整されたモデルのファインチューニングにqLoRAを活用する:LLaMA2(-chat)との事例研究」
大規模言語モデル(LLM)のAnthropicのClaudeやMetaのLLaMA2などは、さまざまな自然言語タスクで印象的な能力を示していますしかし、その知識とタスク固有の...
なぜ私たちはHugging Face Inference Endpointsに切り替えるのか、そしてあなたも切り替えるべきかもしれません
Hugging Faceは最近、Inference Endpointsをリリースしました。これは、彼らが言うように「トランスフォーマーを本番環境で解決する」というものです。Inference Endpointsは、次のことができるマネージドサービスです: Hugging Face Hub上で(ほぼ)任意のモデルをデプロイする 任意のクラウド(AWS、Azure、GCPも近日中に)にデプロイする GPUを含むさまざまなインスタンスタイプで実行する 私たちは、CPU上で推論を行ういくつかの機械学習(ML)モデルを、この新しいサービスに切り替えています。このブログでは、なぜ切り替えるのか、また切り替えを検討する理由について説明します。 これまでの取り組み 私たちがInference Endpointsに切り替えたモデルは、以前は内部で管理され、AWS Elastic Container Service(ECS)上で実行されていました。これにより、コンテナベースのタスクを実行できるサーバーレスクラスターが提供されます。私たちのプロセスは次のようなものでした: GPUインスタンスでモデルをトレーニングする(transformersでトレーニングされたCMLで供給) Hugging Face Hubにアップロードする モデルを提供するためのAPIを構築する(FastAPI) APIをコンテナにラップする(Docker) コンテナをAWS Elastic…
NLPとエリシットを用いたジェンダー平等に関する研究の探索
はじめに NLP(自然言語処理)は、膨大なテキストデータを理解するのに役立ちます。大量の文書を手作業で読む代わりに、これらの技術を利用して理解を高速化し、主要なメッセージに素早くたどり着くことができます。このブログ記事では、パンダデータフレームとPythonのNLPツールを使用して、Elicitを使用してアフガニスタンのジェンダー平等に関する研究で人々が何を書いたかを把握する可能性について探求します。これらの洞察は、女性や女の子にとって最も困難な場所の1つとされている国で、ジェンダー平等を推進するために何がうまくいき、何がうまくいかなかったかを理解するのに役立つかもしれません(World Economic Forum、2023年)。 学習目標 CSVファイル内のテキストのテキスト分析の習得 Pythonでの自然言語処理の方法に関する知識の習得 効果的なデータ可視化のためのスキルの開発 アフガニスタンにおけるジェンダー平等に関する研究が時間とともにどのように進展したかについての洞察の獲得 この記事は、データサイエンスブログマラソンの一環として公開されました。 文献レビューにおけるElicitの使用 基礎となるデータを生成するために、私はAIパワードツールであるElicitを使用して文献レビューを行います(Elicit)。ツールに質問をすることで、アフガニスタンでジェンダー平等が失敗した理由に関連する論文のリストを生成するように依頼します。その後、CSV形式で結果の論文リスト(150以上のランダムな数の論文とみなします)をダウンロードします。このデータはどのように見えるのでしょうか?さあ、見てみましょう! PythonでElicitからのCSVデータを分析する まず、CSVファイルをパンダデータフレームとして読み込みます: import pandas as pd # ファイルパスとCSVファイルを特定 file_path = './elicit.csv' #…
メイカーに会おう:ソフトウェアエンジニアがNVIDIA Jetsonを活用して自律運転スケートパークを構築
Kirk Kaiser Kirk Kaiserは、自転車に乗り新聞を配達するというプレイヤーが、通りの中央に出現するランプなどの障害物に遭遇しながら新聞を配達するビデオゲーム「Paperboy」のファンで育ちました。 これが、ソフトウェア開発者の最新プロジェクトのインスピレーション元となり、NVIDIA Jetsonプラットフォームを利用したエッジAIやロボット技術を使用した自動運転スケートランプを作りました。 フロリダ州のナポリに拠点を置く熱心なスケートボーダーであるKaiserは、「私の人生にPaperboyの不条理さと楽しさが加わることを望んでいた」と語ります。「ある日、私は犬のBenjiが私の傍らを走っているのを見ながらボードに乗っていたときに、『私が一緒に持っていけるランプがあったらどうだろうか?』と思いました。」 彼は今、それを実現する技術を構築しています。携帯可能な自律型スケートパークにつながる可能性のある技術です。 これまでに、彼は電動プラットフォームを開発し、ランプを持ち上げて地面と水平にすることができるようにしました。PS4コントローラーを使用し、NVIDIA Jetson Nano Developer KitにBluetoothで接続して操縦できます。 今は、新しいNVIDIA Jetson Orin Nano Developer Kitの助けを借りて、プラットフォームが通りや障害物を認識し、AIモデルをトレーニングするためのデータを収集して、最終的に完全に自律的になることができるようにしています。 これは、彼がGitpodという、ソフトウェアメーカー向けのクラウド開発環境を提供するスタートアップの開発者関係の責任者として没頭していないときに取り組むプロジェクトです。 メーカーについて Kaiserは、若いうちからソフトウェアエンジニアリングを学び、テクノロジーに特化した名門高校に奨学金を受け入れました。そこで、彼はプログラミングスキルを磨き、若い大人になる前に、まったく異なる方法で世界を見て体験する時間を過ごしました。 18歳のとき、彼はバッグを詰め、コスタリカの野生生物保護区で1年間暮らし、パーマカルチャーファームで働き、食べ物を育てて飲料用の雨水を集めました。その後、バーモントに移り、禅仏教徒と一緒に農業を行い、アパラチアン・トレイルの1,000マイルのハイキングをし、4つの州を通り抜けました。 トレイルを去った後、Kirkは旅行ウェブサイトを立ち上げ、化粧品会社で最初のソフトウェアの仕事を得て、照明会社の研究開発部門で働き、家族を養うためにソフトウェアエンジニアリングの情熱を再燃させました。現在、4歳の息子を含む家族を養うために働いています。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.