Learn more about Search Results 凸

2024年にフォローするべきデータサイエンスのトップ12リーダー

データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…

このAI論文は、高品質な3Dセグメンテーションを実現するために、与えられたシーン内の任意のオブジェクトのためのセグメントエニシングのための高品質(SANeRF-HQ)フレームワークを紹介しています

香港科技大学、卡内基梅隆大学和达特茅斯学院的研究人员开发了名为SANeRF-HQ(High-Quality的NeRF任意物体分割)的方法,以在复杂场景中实现准确的三维分割。以往基于NeRF的物体分割方法在准确性方面受到限制。而SANeRF-HQ结合了”Segment Anything Model”(SAM)和神经辐射场(NeRF)的功能,提高了分割准确性并在复杂环境中提供了高质量的三维分割。 NeRF在处理复杂场景时面临挑战。SANeRF-HQ通过使用SAM进行开放世界的物体分割,并由用户提示进行指导,以及使用NeRF进行信息聚合来克服这些挑战。它在物体定位的灵活性和视图间一致的分割方面胜过以往的NeRF方法。对NeRF数据集的定量评估凸显了它对三维计算机视觉和分割的潜在贡献。 NeRF在使用多层感知器进行新视图合成方面表现出色。虽然NeRF内的3D物体分割已经取得成功,但Semantic-NeRF和DFF等以前的方法依赖于受限的预训练模型。SAM允许多样的提示,并在分割方面擅长零样例泛化。SANeRF-HQ利用SAM进行开放世界分割和NeRF进行信息聚合,解决了复杂场景中的挑战,并在质量上超越以往的NeRF分割方法。 SANeRF-HQ使用特征容器、蒙版解码器和蒙版聚合器来实现高质量的三维分割。它对SAM特征进行编码,生成中间蒙版,并使用NeRF的颜色和密度场将2D蒙版整合到3D空间中。该系统结合了SAM和NeRF进行开放世界分割和信息聚合。它可以使用NeRF生成的视频和SAM的自动分割功能来执行基于文本和自动的三维分割。 SANeRF-HQ在高质量的三维物体分割方面胜过以往的NeRF方法。它提供了在物体定位和视图间一致的分割方面的灵活性增强。对多个NeRF数据集的定量评估证实了其有效性。SANeRF-HQ展示了在动态NeRF中的潜力,实现了基于文本提示的分割,并能够进行自动的三维分割。使用密度场、RGB相似度和光线对RGB损失可以提高分割的准确性,填补内部和边界的缺失部分,从而获得视觉上改进且更加稳固的分割结果。 总之,SANeRF-HQ是一种高级的三维分割技术,超越了以往的NeRF方法,具有在多个视图上的灵活性和一致性。它在各种NeRF数据集上的优越表现表明,它具有在三维计算机视觉和分割技术方面做出重要贡献的潜力。将其扩展到4D动态NeRF物体分割以及使用密度场、RGB相似度和光线对RGB损失进一步增强了其准确性和质量,融合了颜色和空间信息。 未来的研究可以探索SANeRF-HQ在4D动态NeRF物体分割方面的潜力。它可以通过在复杂和开放世界场景中的应用中进行研究,并与语义分割和场景分解等先进技术相结合,以增强其功能。对SANeRF-HQ在真实世界场景中可用性和有效性进行用户研究可以提供有价值的反馈。进一步探索其在大规模场景和数据集上的可扩展性和效率,以优化实际应用的性能是必要的。

DL Notes 高度な勾配降下法

以前の記事では、勾配降下法について基本的な概念とその種類の最適化における主な課題を要約しましたしかし、スティーブンスティカスティック勾配法のみを取り上げました...

マシンラーニングと最適化アルゴリズムのマリッジ

「ほとんどの人は気づかないかもしれませんが、最適化アルゴリズム(OAs)はどこでも働いていますそれらは食料品店の棚卸し計画を立てたり、空港のスケジュールを作成したり、最短ルートを提供したりします...」

学ぶための勇気: L1&L2正則化の解明(パート3)

「‘MLの学びへの勇気:L1とL2正則化の解読’ 第3回目にお帰りなさい前回は、正則化の目的について掘り下げ、L1とL2の方法を解読しました…」

パーセプトロンからアダラインまで – From the Perceptron to Adaline

「以前の記事で、おそらく存在したもっとも基本的な二元分類器であるローゼンブラットのパーセプトロンを説明しようとしましたこのアルゴリズムを理解することは教育的な価値があり、...」

「MLを学ぶ勇気:L1とL2の正則化の解明(パート1)」

「機械学習への挑戦へようこそ」へようこそ、ここではL1とL2の正則化について探求を始めますこのシリーズは、複雑な機械学習の概念を簡素化し、リラックスした雰囲気で提供しています...

DLノート:勾配降下法

人工ニューラルネットワーク(ANN)は、万能関数近似器です十分なデータが与えられ、適切なアーキテクチャがあり、十分な訓練が行われれば、複雑な関数を近似することができます...

『ラグランジュの未定乗数法、KKT条件、そして双対性 – 直感的に説明する』

この物語では、数理最適化に関連する3つの明確で洞察力のある概念を探求しますこれらの概念は、私が完全に理解するために相当な時間と努力を要しましたので、私は...

「機械学習における10種類のクラスタリングアルゴリズム」

イントロダクション あなたはデータの巨大なボリュームがどのように解析され、隠れたパターンや洞察が明らかにされるのかを考えたことがありますか?その答えは、クラスタリングにあります。クラスタリングは、機械学習やデータ分析において強力なテクニックであり、顧客セグメンテーションから画像分析までの様々なタスクで似た特徴を持つデータポイントをグループ化することができます。 本記事では、機械学習における10種類の異なるクラスタリングアルゴリズムについて探求し、それらの動作や適用範囲について解説します。 クラスタリングとは何ですか? 顧客の購買履歴、生物の計測値、または画像のピクセルなど、さまざまなデータポイントの集合があると想像してください。クラスタリングを使用すると、それぞれのクラスタは他のクラスタよりも内部のアイテム同士がより類似しているサブセットにデータポイントを整理することができます。これらのクラスタは、共通の特徴や属性、または即座に明らかにされない関係によって定義されます。 クラスタリングは、マーケットセグメンテーションや推薦システムから異常検出や画像セグメンテーションまで様々な分野で重要です。データ内の自然なグループを認識することで、企業は特定の顧客セグメントに対してターゲティングを行うことができ、研究者は種を分類することができ、コンピュータビジョンシステムは画像内のオブジェクトを分離することができます。したがって、クラスタリングで使用される多様なテクニックやアルゴリズムを理解することは、複雑なデータセットから価値ある洞察を抽出するために必要です。 では、10種類の異なるクラスタリングアルゴリズムを理解しましょう。 A. セントロイドベースのクラスタリング セントロイドベースのクラスタリングは、セントロイド(代表点)の概念に基づいてデータセット内のクラスタを定義するクラスタリングアルゴリズムのカテゴリです。これらのアルゴリズムは、データポイントとそのクラスタのセントロイドとの距離を最小化することを目指します。このカテゴリには、K-meansとK-modesという2つの代表的なクラスタリングアルゴリズムがあります。 1. K-meansクラスタリング K-meansは、データをk個のクラスタに分割する広く利用されるクラスタリング手法です。kはユーザーによって事前に定義されます。この手法では、データポイントを最も近いセントロイドに割り当て、収束するまでセントロイドを再計算します。K-meansは数値属性を持つデータに効率的で効果的です。 2. K-modesクラスタリング(カテゴリカルデータのクラスタリングバリアント) K-modesは、カテゴリカルデータに適したK-meansの適応です。セントロイドではなく、各クラスタ内で最も頻度の高いカテゴリ値を表すモードを使用します。K-modesは、非数値属性を持つデータセットで価値のあるクラスタリングを効率的に行うための貴重な手段です。 クラスタリングアルゴリズム 主な特徴 適切なデータタイプ 主な使用例 K-meansクラスタリング セントロイドベース、数値属性、スケーラブル 数値(数量)データ 顧客セグメンテーション、画像分析…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us