Learn more about Search Results リソース

Amazon AlexaのAI研究者がQUADRoを発表:QAシステムの向上に向けた画期的なリソースで、440,000以上のアノテーション付きの例があります

人工知能(AI)と機械学習(ML)の能力は、あらゆる可能な産業に進出することを成功裏に可能にしました。最近では、大規模言語モデル(LLM)と質問応答システムの導入により、AIコミュニティは大きな進歩を遂げています。事前計算されたデータベースから効率的に応答を取得することは、自動質問応答(QA)システムの開発における一般的なステップです。 主なQAパラダイムには、オープンブック型とクローズドブック型の2つがあります。オープンブック型、またはリトリーブアンドリード型は、適切な素材を大量の文書コーパス、頻繁にインターネットから取得する2つの手順を経て、異なるモデルや手法を適用して取得された素材から解決策を取り出す手法です。一方、クローズドブック型は最近の手法であり、外部のコーパスを利用せずにT5などのSeq2Seqモデルを基にしたモデルを訓練することで、結果を生成します。 クローズドブック技術は優れた結果を示しているものの、多くの産業アプリケーションに対してリソースが過剰であり、システムのパフォーマンスに重大なリスクをもたらす可能性があります。質問応答型データベース(DBQA)は、パラメータや大規模なコーパスの情報に頼るのではなく、事前生成された質問応答のデータベースから応答を取得する方法です。 これらのシステムの主要な部分は、質問と回答のデータベース、データベースのクエリに対する検索モデル、および最適な回答を選ぶランキングモデルです。DBQA技術により、迅速な推論と再学習モデルなしで新しいペアを追加できる能力が可能となり、新しい情報を導入することができます。 DBQA技術の課題の一つは、検索およびランキングモデルの開発における充分なトレーニングデータの不足です。既存のリソースはスコープと内容の面で不足しており、注釈プロセスの品質を向上させる必要があるものや、質問と質問の類似性に焦点を当て、回答を無視するものが多数存在しています。 これらの課題に対処するため、研究者チームは質問応答データベースの検索に関するデータセットとモデルであるQUADRoを提案しました。これは訓練と評価のために特別に作成された新しいオープンドメインの注釈リソースです。リポジトリの15,211の入力質問には、各質問に関連する30の質問応答ペアがあります。このコレクションには合計で443,000の注釈付きサンプルが含まれています。入力クエリに対する各ペアの重要性を示すバイナリインジケータがラベル付けされています。 研究チームはまた、このリソースの品質と特性をいくつかの重要なQAシステムコンポーネントに関して評価するための徹底した実験も行いました。これらの要素には、トレーニング方法、入力モデルの構成、および回答の関連性が含まれます。実験は、このデータセットで訓練されたモデルの挙動とパフォーマンスを検討することで、関連する応答を取り出すために提案された方法がどれだけうまく機能するかを示しました。 まとめると、この研究は、自動品質保証システムにおけるトレーニングとテストデータの不足を解決するために、有用なリソースを導入し、リソースの属性を慎重に評価することで、包括的な理解を支援しています。トレーニング戦略と回答の関連性のような重要な要素に重点を置くことで、評価が補完されます。

パフォーマンスの向上と最適化されたリソース使用のためのダイナミックなLoRAローディング

私たちは、拡散モデルに基づくLoRAのハブ内の推論速度を大幅に高速化することができました。これにより、計算リソースを節約し、より良いユーザーエクスペリエンスを提供することができました。 モデルへの推論を行うには、2つのステップがあります: ウォームアップフェーズ – モデルのダウンロードとサービスのセットアップ(25秒)。 推論ジョブ自体(10秒)。 これらの改善により、ウォームアップ時間を25秒から3秒に短縮することができました。数百の異なるLoRAに対する推論を、たった5つのA10G GPU以下で提供することができます。さらに、ユーザーリクエストへの応答時間は35秒から13秒に短縮されました。 一つのサービスで多くの異なるLoRAを動的に提供するために、Diffusersライブラリで開発された最近の機能を活用する方法についてもっと話しましょう。 LoRA LoRAは「パラメータ効率」(PEFT)メソッドの一環である、微調整技術です。このメソッドは、微調整プロセスによって影響を受けるトレーニング可能なパラメータの数を減らすことを試みます。微調整の速度を高めながら、微調整済みチェックポイントのサイズを減らすことができます。 モデルの全ての重みに微小な変更を行うことによってモデルを微調整する代わりに、ほとんどの層を固定し、注意ブロック内の特定の一部の層のみをトレーニングします。さらに、これらの層のパラメータに触れず、二つの小さな行列の積を元の重みに加えることで、これらの層のパラメータを更新します。これらの小さな行列は微調整プロセス中に更新され、ディスクに保存されます。これにより、元のモデルのパラメータはすべて保存され、適応方法を使用してLoRAの重みを上にロードすることができます。 LoRA(Low Rank Adaptation)という名前は、先ほど言及した小さな行列から来ています。このメソッドについての詳細は、この記事または元の論文をご覧ください。 上記の図は、LoRAアダプタの一部として保存される二つの小さなオレンジ色の行列を示しています。後でこれらのLoRAアダプタをロードし、青いベースモデルと結合して黄色の微調整モデルを取得することができます。重要なことは、アダプタをアンロードすることも可能なので、いつでも元のベースモデルに戻すことができるということです。 言い換えると、LoRAアダプタは、必要に応じて追加および削除が可能なベースモデルのアドオンのようなものです。AとBの小さなランクのため、モデルサイズと比較して非常に軽量です。したがって、ロード時間は全体のベースモデルをロードするよりもはるかに高速です。 例えば、多くのLoRAアダプタのベースモデルとして広く使用されているStable Diffusion XL Base 1.0モデルリポジトリを見ると、そのサイズは約7 GBです。しかし、このモデルのような典型的なLoRAアダプタは、わずか24 MBのスペースしか使用しません!…

ジェネラティブAIとプロンプトエンジニアリングを学ぶための5つの無料リソース

プロンプトエンジニアリングは技術スキルのワイルドウェストになりつつありますこの分野はまだ幼いですが、プロンプトエンジニアになりたい場合に活用できるリソースが増えてきていますそれ自体が目標ではなく、単に学びたいだけでも…

「ハギングフェイスの研究者たちは、Distil-Whisperを紹介しました:高性能でリソースが限られた環境におけるギャップを埋めるコンパクトな音声認識モデル」

ハギングフェイスの研究者たちは、リソース制約のある環境での大規模な事前学習済音声認識モデルの展開の問題に取り組んできました。彼らは、擬似ラベリングを通じて大規模なオープンソースデータセットを作成することにより、この問題を解決しました。そのデータセットは、Distil-Whisperと呼ばれるWhisperモデルのより小さいバージョンの煮詰まった形式に蒸留されるために利用されました。 Whisper音声認識トランスフォーマーモデルは、ノイズの多いインターネット音声データの680,000時間の事前学習を行いました。これは、トランスフォーマーベースのエンコーダとデコーダのコンポーネントを含み、ファインチューニングなしでゼロショットシナリオで競争力のある結果を実現しています。Distil-Whisperは、擬似ラベリングを使用して行われた知識蒸留を通じて派生したコンパクトなバージョンです。Distil-Whisperは、長い形式のオーディオにおける幻聴エラーを緩和しながら、Whisperモデルの耐音響的な状況への頑健性を維持しています。この研究は、音声データのための大規模な擬似ラベリング方法を導入し、知識蒸留に対する未探索でありながら有望なアプローチです。 自動音声認識(ASR)システムは人間レベルの精度に達しましたが、リソース制約のある環境での事前学習モデルのサイズの増大による課題に直面しています。Whisperは大規模な事前学習済ASRモデルで、さまざまなデータセットで優れた性能を発揮しますが、低レイテンシの展開にはより実用的になる可能性があります。知識蒸留はNLPトランスフォーマーモデルを効果的に圧縮してきましたが、音声認識での利用は未探索です。 提案されたアプローチでは、知識蒸留を容易にするために、擬似ラベリングを使用して大規模なオープンソースデータセットを構築します。トレーニング品質を確保するために、最適な擬似ラベルの選択にWERヒューリスティックが使用されます。知識蒸留の目的は、Kullback-Leibler距離と擬似ラベルの項の組み合わせで、学生の隠れ層の出力を教師のものと一致させるために平均二乗誤差の成分を導入することです。この蒸留技術は、Seq2Seq ASRフレームワーク内のWhisperモデルに適用され、一貫した転写のフォーマッティングとシーケンスレベルの蒸留ガイダンスを提供します。 知識蒸留によって得られたDistil-Whisperは、元のWhisperモデルと比較してスピードが向上し、パラメータが削減されています。ゼロショットシナリオでの分布外テストデータにおいて、Distil-Whisperは1%未満のWERを達成し、5.8倍の高速化と51%のパラメータ削減を実現しています。distil-medium.enモデルは、わずかに高いWERを持っていますが、6.8倍の即時推論と75%のモデル圧縮を示しています。Whisperモデルは長い形式のオーディオ転写において幻聴エラーに対して脆弱ですが、Distil-Whisperはこれらのエラーを軽減しながら競争力のあるWER性能を維持しています。 結論として、Distil-Whisperは知識蒸留を通じて実現されたWhisperモデルのコンパクトなバリアントです。この革新的なアプローチは、元のWhisperモデルと比較してスピードとパラメータの削減の面で注目すべき利益をもたらします。distil-medium.enモデルはわずかに高いWERを示していますが、より即時の推論と大規模なモデル圧縮を提供しています。 将来の研究では、音声認識におけるトランスフォーマーベースのモデルを圧縮するための音声ドメインの知識蒸留と擬似ラベリングの可能性が有望です。さまざまなフィルタリング方法や閾値が転写品質やダウンストリームのモデル性能に与える影響の調査は、知識蒸留の最適化に貴重な知見を提供することができます。レイヤーベースの方法や平均二乗誤差項を使用した他の圧縮技術の探索は、パフォーマンスを犠牲にすることなくさらなるモデル圧縮を実現する可能性があります。この研究で提供されたトレーニングコード、推論コード、およびモデルは、音声認識のための知識蒸留に関するさらなる研究や実験において貴重なリソースとなるでしょう。

「多言語AIは本当に安全なのか?低リソース言語における大規模言語モデルの脆弱性を明らかにする」

GPT-4は、方針や倫理的な制約に反する要求に対して、「ごめんなさい、それには対応できません」と答えることをデフォルトにしています。大規模な言語モデル(LLM)がチャットボットや執筆ツールなどのユーザー向けアプリケーションで使用される場合、AIの安全訓練とレッドチーミングは重要です。LLMが否定的なマテリアルを生成した場合、深刻な社会的な影響があり、誤った情報の拡散、暴力の助長、プラットフォームの破壊などが含まれます。既にある安全システムのクロス言語の弱点を見つけ、MetaやOpenAIなどの開発者が安全リスクを最小限に抑えるために進展を遂げているにもかかわらず、GPT-4で保護を回避し、否定的な反応を引き起こすために危険な入力を低リソースの自然言語にGoogle翻訳を使って単純に翻訳するだけで十分です。 ブラウン大学の研究者は、英語の入力を低リソース言語に翻訳することで、AdvBenchmarkでさまざまなリソース設定を持つ12の言語をシステム的にベンチマークすることにより、GPT-4の安全フィルタを突破する確率を1%から79%に高めることを実証しています。さらに、彼らの翻訳ベースの戦略が最先端のジェイルブレイキング技術と比較して一致するか、あるいはそれを上回ることを示しており、これはGPT-4のセキュリティ対策に深刻な弱点があることを示しています。彼らの研究はいくつかの点で貢献しています。まず第一に、LLMの攻撃から高リソース言語と低リソース言語の間のギャップという形で示されるように、AI安全訓練コミュニティの差別的な扱いと言語の平等な評価の悪影響を浮き彫りにしています。 また、彼らの研究は、GPT-4で現在利用可能な安全合致トレーニングが言語を横断的に一般化する必要性を示しており、低リソース言語との不一致による一般化安全の欠落モードが存在することを示しています。さらに、彼らの多言語環境の現実は、LLMの安全システムを土台にしています。世界中で低リソース言語を話す約12億人の人々がいます。したがって、安全対策を考慮する必要があります。低リソース言語の対応範囲が増えるにつれて、高リソース言語を話す悪意のある行為者でさえ、現在の予防策を容易に回避することができます。 最後になりますが、この研究はより包括的で包括的なレッドチーミングの採用の緊急性を強調しています。英語中心のベンチマークに焦点を当てることで、モデルが安全であるという印象が生まれるかもしれません。しかし、安全訓練データが広く入手可能でない言語では、侵害のリスクにも依然として脆弱です。さらに重要なのは、彼らの研究結果は、LLMが低リソース言語でテキストを理解し生成する能力を学者たちがまだ正当に評価していないことを示唆しています。彼らは安全コミュニティに対して、低リソース言語を含む拡張言語カバレッジと多言語レッドチーミングデータセットを備えた強力なAI安全ガードレールの構築を求めています。

「リソース制約のあるアプリケーションにおいて、スパースなモバイルビジョンMoEsが密な対応物よりも効率的なビジョンTransformerの活用を解き放つ方法」

ミクスチャー・オブ・エキスパート(MoE)と呼ばれるニューラルネットワークのアーキテクチャは、さまざまなエキスパートニューラルネットワークの予測を組み合わせます。MoEモデルは、いくつかのサブタスクや問題の要素が専門的な知識を必要とする複雑な作業に対応します。これらは、ニューラルネットワークの表現を強化し、さまざまな難しいタスクを処理できるようにするために導入されました。 さらに、スパースゲーテッド・ミクスチャー・オブ・エキスパート(MoE)として知られるニューラルネットワークのアーキテクチャは、ゲーティングメカニズムに疎結合性を追加することで従来のMoEモデルのアイデアを拡張します。これらのモデルは、MoEデザインの効率性とスケーラビリティを向上させ、コンピューティングコストを低減するために作成されています。 それぞれの入力トークンに対してモデルパラメータの一部のみを独占的に活性化できる能力により、モデルのサイズと推論の効率を切り離すことができます。 ニューラルネットワーク(NN)を使用する場合、特にわずかな計算リソースしか利用できない場合には、パフォーマンスと効率の両方をバランスさせることは依然として困難です。スパースゲーテッド・ミクスチャー・オブ・エキスパートモデル(sparse MoEs)は、モデルのサイズと推論の効率を切り離すことができるため、最近は潜在的な解決策として見なされています。 スパースMoEsは、モデルの能力を増強し、計算コストを最小限に抑える可能性を提供します。これにより、大規模なビジュアルモデリングの主要なアーキテクチャ選択肢であるTransformersと統合するオプションとなります。 このため、Appleの研究チームは、「Mobile V-MoEs: Scaling Down Vision Transformers via Sparse Mixture-of-Experts」という論文で、スパースモバイルビジョンMoEsの概念を紹介しました。これらのV-MoEsは、優れたモデルパフォーマンスを維持しながらVision Transformers(ViTs)を縮小する効率的でモバイルフレンドリーなミクスチャーオブエキスパートデザインです。 研究者は、セマンティックスーパークラスを活用してエキスパートのアンバランスを回避するシンプルで堅牢なトレーニング手順を開発したと強調しています。これにより、パッチごとのルーティングでは通常、各画像に対してより多くのエキスパートがアクティブになりますが、パーイメージルーターでは画像ごとのアクティブなエキスパートの数が減少します。 研究チームは、トレーニングフェーズをベースラインモデルのトレーニングから始めました。その後、モデルの予測をトレーニングデータセットから保持された検証セットに記録し、混同行列を作成しました。この混同グラフは、混同行列を基にグラフクラスタリングアルゴリズムによって処理されました。このプロセスにより、スーパークラスの分割が作成されました。 彼らは、モデルが標準のImageNet-1k分類ベンチマークで経験的な結果を示していると述べています。彼らは、1.28Mの画像からなるImageNet-1kトレーニングセットですべてのモデルをゼロからトレーニングし、その後、50Kの画像からなる検証セットでのトップ1の精度を評価しました。 研究者は将来的にもViTs以外のモバイルフレンドリーモデルでMoEデザインを使用したいと考えています。また、物体検出などの他のビジュアルタスクも考慮に入れる予定です。さらに、すべてのモデルにおける実際のオンデバイスのレイテンシを定量化することを目指しています。

エンジニアにとって役立つ6つのリソース

「このリソースのコレクションは、さまざまな経験レベルを持つ多くのAIのプロフェッショナルに役立つでしょうブックマークに保存して、自由な時間に学習してください」

ChatGPTの基礎を学ぶための優れたリソース

この記事では、ChatGPT(および大規模言語モデル)の中核を構成する基本的な要素について学びます

「データの可視化を改善するための4つの必須リソース」

効果的なデータの視覚化は、データサイエンティスト、地球科学者、ペトロ物理学者にとって重要ですこれらのスキルを学ぶことで、私たちは研究や分析を伝えることができるようになります…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us