Learn more about Search Results ランサムウェア
- You may be interested
- UN支援チームがウクライナの歴史的な場所...
- 「Google Quantum AIは、薬学、化学、およ...
- メタが彼らの有望なプロジェクトをすべて...
- ビル・ゲイツが生生成AIの未来に疑問を呈す!
- VoAGIニュース、5月31日:データサイエン...
- 『デイリースタンドアップで時間を無駄に...
- EDIとは何ですか?電子データ交換について
- Googleの研究者が新たな大規模言語モデル...
- GPT2からStable Diffusionへ:Hugging Fac...
- 『ゴーストバスター内部:バークレー大学...
- ETHチューリッヒとマイクロソフトの研究者...
- 「PaLM 2はどのように動作しますか?完全...
- 「単一細胞生物学のAIのフロンティアを探...
- 「ジェミニ発表ビデオでグーグルが誤解を...
- 「Objaverse-XLと出会ってください:1000...
このAIの論文は、生成型AIモデルのサイバーセキュリティに関する意味を明らかにしています-リスク、機会、倫理的な課題
生成AI(GenAI)モデル、ChatGPT、Google Bard、そしてMicrosoftのGPTなどは、AIインタラクションを革新しました。これらはテキスト、画像、音楽などの多様なコンテンツを作成し、コミュニケーションや問題解決に影響を与えることで、さまざまな領域を再構築しています。ChatGPTの急速な普及は、GenAIが日常のデジタルライフに統合され、人々のAIとの認識とやり取りを変えていることを反映しています。人間のような会話を理解し生成する能力により、AIはより広範な観客に対してアクセス可能で直感的になり、認識を大きく変えることができました。 GenAIモデルの状態は、GPT-1からGPT-4などの最新の試行まで、急速に進化しています。それぞれの試行は、言語理解、コンテンツ生成、およびマルチモーダル機能において、大きな進歩を示してきました。しかし、この進化には課題もあります。これらのモデルの高度化は、倫理的な懸念、プライバシーのリスク、および悪意のある主体が悪用するかもしれない脆弱性とともにやってきます。 この観点から、最近の論文では、特にChatGPTについて、セキュリティとプライバシーの影響について詳しく検討されています。この論文では、ChatGPTにおいて倫理的な境界とプライバシーを侵害する脆弱性が明らかにされ、悪意のあるユーザーに悪用される可能性があることが示されています。論文では、Jailbreaksや逆心理学、およびプロンプトインジェクション攻撃などのリスクが強調され、これらのGenAIツールに関連する潜在的な脅威が示されています。また、サイバー犯罪者がソーシャルエンジニアリング攻撃、自動ハッキング、およびマルウェアの作成にGenAIを誤用する可能性についても探求されています。さらに、ポテンシャルな攻撃に対抗するために、GenAIを利用した防御技術についても論じられており、サイバーディフェンスの自動化、脅威インテリジェンス、安全なコード生成、および倫理的なガイドラインの強化を強調しています。 この研究チームは、ChatGPTを操作する方法について詳細に探求しました。DAN、SWITCH、およびCHARACTER Playなどのジェイルブレーキング手法について説明し、制約を上書きし倫理的な制約を回避することを目指しています。これらの手法が悪意のあるユーザーによって悪用された場合の潜在的なリスクが強調され、有害なコンテンツの生成やセキュリティ侵害が起こる可能性があります。さらに、ChatGPT-4の機能が制限されずに利用される場合にインターネットの制限を破る可能性がある心理プロンプトインジェクション攻撃にも踏み込んでおり、ChatGPTなどの言語モデルの脆弱性を紹介し、攻撃ペイロード、ランサムウェア/マルウェアコード、およびCPUに影響を与えるウイルスの生成の例を提供しています。これらの探求は、AIモデルの潜在的な誤用による重要なサイバーセキュリティの懸念を明確にし、ChatGPTのようなAIモデルがソーシャルエンジニアリング、フィッシング攻撃、自動ハッキング、およびポリモーフィックマルウェアの生成にどのように誤用されるかを示しています。 研究チームは、ChatGPTがサイバーディフェンスに貢献するいくつかの方法を探求しました: – 自動化:ChatGPTはSOCアナリストを支援し、インシデントの分析、レポートの生成、および防御戦略の提案を行います。 – レポート作成:サイバーセキュリティデータに基づいて理解可能なレポートを作成し、脅威の特定とリスクの評価を支援します。 – 脅威インテリジェンス:広範なデータを処理して脅威を特定し、リスクを評価し、緩和策を推奨します。 – セキュアコーディング:コードレビューにおけるセキュリティバグの検出を支援し、セキュアなコーディングのプラクティスを提案します。 – 攻撃の特定:データを分析して攻撃パターンを説明し、攻撃の理解と予防を支援します。 – 倫理的なガイドライン:AIシステムの倫理的なフレームワークの要約を生成します。 – テクノロジーの向上:侵入検知システムと統合して脅威検知を向上させます。 – インシデント対応:即時のガイダンスを提供し、インシデント対応プレイブックを作成します。 –…
2024年のインフラストラクチャー予測
企業はAIの導入の転換点を見ているランサムウェアの脅威が罰則と衝突し、ハイブリッドクラウドアーキテクチャが主流となり、インフラのアップグレードが重要です
サイバーセキュリティが食品と農業を守る
サイバー攻撃から米国の食料供給を保護する
クラウドの保護:クラウドセキュリティのフロンティアを航海する
この記事では、クラウドセキュリティについて、重要な考慮事項、ベストプラクティス、およびクラウド上のデータを保護するための進化するランドスケープについて探求します
「サイバーセキュリティとAI、テキサスサイバーサミットの中心に」
「テキサスサイバーサミット2023のレビューに飛び込んでくださいAIがセキュリティに与える影響を知り、ゼロトラスト戦略について学び、ランサムウェアのドスとドン'tsについてもご覧くださいさらに詳しく」
「AIベースのサイバーセキュリティがビジネスの強靭性を高める方法」
世界の50億人以上のインターネットユーザーとおよそ540億個のデバイスが、IDCによると1秒あたり3.4ペタバイトのデータを生成しています。デジタル化が加速する中、企業のITチームは、ビジネスの運用やサービスが中断されないように、入ってくるサイバー脅威を特定してブロックするための頼りになる手段として、AIベースのサイバーセキュリティを利用しています。 サイバー脅威から免れる業界はごく一部です。今年だけでも、国際ホテルチェーン、金融機関、フォーチュン100社の小売業、航空管制システム、アメリカ政府などが脅威と侵入を報告しています。 内部のミス、サイバー犯罪者、ハクティビスト、その他の脅威からのリスクにより、サイバーランドスケープでの損害は企業の評判や収益に影響を与えることがあります。セキュリティ侵害は業務を麻痺させ、特許や顧客データを危険にさらし、規制違反に対する罰金を申し受けることになったり、顧客の信頼を損ねる結果になることもあります。 AIと高速計算を活用することで、ビジネスはサイバー脅威を検出しブロックするために必要な時間と運用費用を削減できるだけでなく、リソースをコアビジネスの価値創造活動や収益を生み出す活動に集中させることができます。 以下では、様々な業界がどのようにAI技術を活用してデータを保護し、より早い脅威の検出を可能にし、攻撃を緩和して顧客やパートナーへのサービスの一貫した提供を保証しているかをご紹介します。 公共部門:身体の安全、エネルギーの安全、市民サービスの保護 AI搭載の分析ツールと自動化ツールは、政府機関が市民に情報やサービスに即時アクセスさせ、データに基づいた意思決定を行い、気候変動をモデル化し、自然災害を管理するなどの支援をしていますが、デジタルツールとインフラストラクチャーを管理する公的機関は、規制の遵守要件、公的監査、大規模で相互に接続されたネットワーク、機密データや重要な標的の保護の必要性を含む、複雑なサイバーリスクの環境に直面しています。 敵対する国家は、ネットワークの中断、知的財産の窃取、機密政府文書の盗難などのためにサイバー攻撃を開始する可能性があります。内部のミスや複雑な外部スパイ活動により、公共機関はデータ侵害の高いリスクにさらされます。スパイ活動者は内部の協力を受けることもあり、16%の公共行政の侵害事件では、共謀の証拠が見られます。重要なインフラ、市民データ、公的記録などの機密情報を保護するために、連邦機関はAIに頼っています。 アメリカエネルギー省(DOE)のサイバーセキュリティ、エネルギーセキュリティ、緊急対応(CESER)事務局は、新興の脅威に対応し、エネルギーインフラのセキュリティを向上させることにより、国のエネルギーセクターの耐性を強化することを目的としています。DOE-CESERは2010年以来、サイバーセキュリティの研究、開発、デモンストレーションプロジェクトに2億4,000万ドル以上を投資しています。 その一環として、同省はエネルギー供給システムのセキュリティの脆弱性とパッチ管理をAIで自動化し最適化するツールを開発しました。また、エネルギー供給システムの状況認識を向上させるためにソフトウェア定義ネットワークを利用した人工多様性とディフェンスセキュリティのための別のプロジェクトも行っており、エネルギーの連続的な流れを確保しています。 国家安全保障のための画期的な技術の研究と投資を担当している国防高等研究プロジェクト局(DARPA)は、機械学習とAIを複数の領域で使用しています。DARPAのCASTLEプログラムは、AIを訓練して高度で持続的なサイバー脅威から防御することを目的としています。この取り組みの一環として、研究者たちは自動化、繰り返し可能性、測定可能性を持つアプローチでサイバーセキュリティの評価を迅速化することを意図しています。また、サプライズ攻撃や敵対的攻撃に耐性のあるAIモデルの開発を支援するためのプラットフォーム、ライブラリ、データセット、トレーニング資料を提供するためのDARPA GARDプログラムもあります。 脅威の変化に対応し、身体の安全、エネルギーの安全、データの安全性を確保するために、公共機関はAIを統合し、ダイナミックで予防的かつ広範なサイバーディフェンスの姿勢を維持する必要があります。 金融サービス:デジタルトランザクション、支払い、ポートフォリオのセキュリティ確保 銀行、資産運用会社、保険会社などの金融機関は、AIと機械学習を活用して、不正検知、ポートフォリオ管理、アルゴリズム取引、セルフサービスバンキングなどで優れたパフォーマンスを提供しています。 デジタルトランザクション、支払い、融資、投資取引などが絶え間なく行われる金融サービス機関は、最も大規模で、複雑で、機密性の高いデータセットを取り扱っています。医療業界に次ぐデータ漏洩のコストは第二位であり、一件あたりのコストは約600万ドルです。規制当局からの罰金が発生した場合や、回復に法的費用や訴訟解決費用がかかるとコストは上昇します。さらに悪いことに、信頼が修復されなければ、失われたビジネスを回復することはありません。 銀行や金融機関は、AIを使用して内部の脅威を検知し、フィッシングやランサムウェアを検出し、機密情報を安全に保つための対策を講じています。 MastercardとEnel Xによる共同事業であるFinSec Innovation Labは、顧客がランサムウェアに対抗するためにAIを活用しています。FinSecとの協力前に、1つのカード処理顧客は1時間半で200社のサーバーがLockBitランサムウェアの攻撃を受けました。会社はサーバーをシャットダウンし、業務を一時停止しなければならず、推定で700万ドルのビジネスの損失が生じました。 FinSecは、この攻撃を研究所で再現し、NVIDIA Morpheusサイバーセキュリティフレームワーク、NVIDIA DOCAソフトウェアフレームワーク、およびNVIDIA…
サイバー犯罪の推進者’ (Saibā hanzai no suishinsha)
イニシャルアクセスブローカーは、無許可のアクセスを販売します (Inisharu akusesu burōkā wa, mukyoka no akusesu o hanbai shimasu.)
サイバーセキュリティにおいてAIを活用して人間を補完する
セキュリティを加速するためにAIを使用する利点がありますしかし、完全な自動化には人間の洞察力が必要です人間の創造力と機械の速度の適切な組み合わせを見つけましょう
学校はサイバー保護のために政府に頼るべきですか?
連邦政府は、K-12の学校とその生徒をサイバー攻撃から守ることができるのでしょうか?
AI Time Journalは、「サイバーセキュリティのトレンド2023」eBookを発表し、進化する脅威の景観を明らかにします
10月12日、アメリカのサンフランシスコ—人工知能(AI)の最前線に位置する主要な出版物であるAI Time Journalは、最新の電子書籍「サイバーセキュリティトレンド2023」の発売を喜んで発表しますこの包括的なリソースは、サイバーセキュリティに関連するさまざまなトピックを探求し、専門家、愛好家、意思決定者に貴重な洞察と分析を提供しています... AI Time Journal、進化する脅威の風景における鍵となる示唆を開示する「サイバーセキュリティトレンド2023」の電子書籍をリリース 詳細を読む »
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.