Learn more about Search Results モデルをエンドポイントに展開する

「Amazon SageMakerの最新機能を使用することで、モデルのデプロイコストを平均で50%削減します」

組織がモデルを本番環境に展開するにつれて、彼らは常に最新のアクセラレーター(AWS InferentiaやGPUなど)で実行される基盤モデル(FM)の性能を最適化する方法を探し続けていますこれにより、コストを削減し、応答遅延を減らして最高のエンドユーザーエクスペリエンスを提供できるようになりますしかし、一部の基盤モデルは十分に活用されていません...

「Amazon SageMakerでのMLOpsによる堅牢な時系列予測」

データ駆動の意思決定の世界では、時系列予測は企業が過去のデータのパターンを利用して将来の結果を予測するための重要な要素です資産リスク管理、トレーディング、天気予報、エネルギー需要予測、バイタルサインモニタリング、交通分析などの分野で働いている場合、正確に予測する能力は成功に不可欠ですこれらの応用では、[…]

「より良いMLシステムの構築-第4章 モデルの展開とその先」

モデルを展開し、その制作を支援することは、機械学習よりもエンジニアリングに関わります機械学習のプロジェクトが制作段階に近づくにつれて、ますます多くの人々が関わってきますバックエンド...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us