Learn more about Search Results ボード

ボードゲームをプレイするためのAIの教育

「最近では、OpenAIの新しいAIモデル、Q*に関する噂があり、特にQ学習において、AI業界の皆さんが強化学習(RL)のスキルを磨いているようです私もその一員であり、…」

「サポートベクターマシン(SVM)とは何ですか?」

サポートベクターマシン(SVM)は、機械学習の分野で利用される教師あり学習アルゴリズムです。主に分類や回帰などのタスクを実行するために使用されます。このアルゴリズムは、メールがスパムかどうかの判断、手書き文字の認識、写真での顔の検出など、さまざまなタスクを処理できます。データ内の多くの情報や複雑な関係に対応できる非常に適応性のあるアルゴリズムです。 SVMの主な役割は、特徴に基づいて異なるグループの間を最適な線(または面)で分離することです。データが紙の上の点のようなもので、それらを完全に異なるクラスに分けるための単一の直線を引くことができると想像してください。これは、データが完全に線形に分離可能である必要があります。 SVMの種類 線形サポートベクターマシン データが直線を使用して簡単に2つのグループに分割できる場合、線形SVMが最適です。データが紙の上の点のようなもので、1本の直線を引いてそれらをきれいに2つの異なるクラスに分離できる状態であることを想像してください。 非線形サポートベクターマシン データが直線を使用して2つの別々のグループに分類できない場合、非線形SVMを使用します。ここでは、データは線形に分離できません。このような場合には、非線形SVMが救世主となります。データが複雑なパターンに従わずにしばしば乱雑な現実世界では、非線形SVMのカーネルトリックが使用されます。 どのように動作するのか? 床に散らばった2つのグループ、例えば緑と青の点があると想像してください。SVMの役割は、これらの点をそれぞれのグループに分けるための最適な線(または3次元の世界では面)を見つけ出すことです。 今、点を分けるための多くの線があるかもしれませんね?しかし、SVMは特別な線を探します。すなわち、線と最も近い緑の点から線までの距離と線と最も近い青の点から線までの距離が最大となる線です。この距離を「マージン」と呼び、SVMはできるだけ大きくすることを目指します。 この線を定義するのに重要な役割を果たす最も近い点を「サポートベクター」と呼びます。SVMは、2つのグループの間のスペースを最大化する最良の線を描くためにこれに焦点を当てます。 しかし、もし点がきれいに直線で分離されていない場合はどうでしょうか?もし点があちこちに散らばっている場合はどうでしょうか?そんなときに、SVMは問題を高次元空間に持ち上げるために「カーネルトリック」と呼ばれるものを使用することができます。これにより、より複雑な分割曲線や曲面を引くことが可能になります。 用途とアプリケーション 1. スパムメールフィルタリング: スパムと普通のメールが混在するメールボックスがあると想像してください。SVMを使用して、スパムと通常のメールを区別するスマートフィルターを作成できます。使用される単語などのメールの様々な特徴を見て、スパムと非スパムを区別する境界線を描き、メールボックスをきれいに保ちます。 2. 手書き文字認識: コンピュータが異なる人々の手書き文字を認識することを希望する場合、SVMが役立ちます。手書き文字の形や大きさなどの特徴を分析することで、SVMは一人の人の手書き文字を別の人のものと分離する線や曲線を描くことができます。これは郵便サービスでの数字認識などのアプリケーションに役立ちます。 3. 医療診断: 医学の世界では、SVMは疾患の診断に役立ちます。ある特定の状態の患者とその他の一般の患者についてのデータがあるとします。SVMは様々な健康指標を分析し、健康な患者と状態を持つ患者を区別する境界線を作成します。これにより、医師がより正確な診断を行うのに役立ちます。 4. 画像分類:…

「たぬき+GPT4を使用して、20分で顧客サポートボットを作成しましょう」

要点 このワークフローは、顧客のフィードバックメッセージに応答し、それらをGPT4 + タヌキ(オープンソース)を使用して優先されたサポートチケットに解析しますこれは誰にとって役立ちますか? 何人でも興味を持っている人は、...

「12年間のデータの旅の年末レポート」

「初心者からリーダーへのデータアナリストの12年間の旅を探検しましょうキャリアの転機、挑戦、データ分野での成長マインドセットの採用についての洞察を提供します」

シミュレーション最適化:友人の会社のサポートデスクをモデル化し最適化の手助けをする

それは比較的シンプルな依頼から始まりました私の友人は、サポートセンターの運営を手伝っており、いくつかの困難を抱えていました支援デスクのエージェントはいつでも効率的でないようで…

「Pixel 8 Pro」という初めてのAI搭載スマートフォンは、現在Gemini Nanoで稼働しており、さらにAIのアップデートがPixelポートフォリオにも導入されています」

ニューフィーチャードロップは、Pixelハードウェアへのアップデートをもたらしますさらに、Gemini Nanoは、Pixel 8 Proのデバイス内生成AI機能をパワーアップします

「Ego-Exo4Dを紹介:ビデオ学習とマルチモーダルパーセプションに関する研究をサポートするための基礎データセットとベンチマークスイート」

今日、AIはほとんどの想像できる分野で応用されています。それは確かに私たちの生活を変え、プロセスを合理化し、効率を向上させてくれました。これまで想像もできなかったことを実現するため、人間のスキル理解をさらに向上させることができるかもしれません。この研究論文では、AIシステムをより優れた人間のスキル理解をするように装備することに焦点を当てています。 人間のスキルを捉えるためには、自己中心的(第一人称)および外向的(第三人称)の視点の両方を考慮する必要があります。さらに、これらの両者の間に連携が必要とされます。他人の行動を自分自身にマッピングすることは、より良い学習のために重要です。既存のデータセットは、自己-外向きのデータセットが非常に限られており、規模が小さく、カメラ間の同期がしばしば欠けているため、この潜在能力を実現するために十分に適していません。この問題に対処するために、Metaの研究者は、Ego-Exo4Dという基礎データセットを導入しました。これは多モーダル、多視点、大規模で、世界中の複数の都市からのさまざまなシーンで構成されています。 より良い理解のためには、時には両方の視点が必要です。たとえば、シェフが第三者の視点から機器を説明し、第一人称の視点から手の動きを見せる場合などです。したがって、より良い人間のスキルを達成するために、Ego-Exo4Dは各シーケンスに第一人称視点と複数の外向き視点を含んでいます。さらに、研究者たちは、すべての視点が時間的に同期していることを保証しています。マルチビューデータセットは、身体のポーズやオブジェクトとの相互作用を捉えるために作成されました。 Ego-Exo4Dは、身体のポーズの動きやオブジェクトとの相互作用を捉えるために、熟練した人間の活動に重点を置いています。このデータセットには、料理、自転車修理など、さまざまなドメインの多様な活動が含まれており、データはラボ環境ではなく本物の環境で収集されています。データの収集には、800人以上の参加者が募集され、堅牢なプライバシーと倫理基準が遵守されました。 このデータセットのすべてのビデオは時間に関連付けられています。つまり、カメラを着用した人物が自分の行動を説明し、第三者が各カメラの映像を説明し、第三者がカメラをつけた人物のパフォーマンスを批評するという特徴があり、他のデータセットとは異なる点です。さらに、トレーニング用の自己-外気データがない場合、熟練した活動の自己中心的な認識において主要な研究課題が生じます。そのため、研究者は、コミュニティがスタートするための出発点を提供するために、一連の基本的なベンチマークを考案しました。これらのベンチマークは、関係、認識、熟練度、自己ポーズの4つのタスクのファミリーに整理されています。 結論として、Ego-Exo4Dは、さまざまなドメインの熟練した人間の活動からなる、前例のない規模の包括的なデータセットです。これは従来のデータセットの欠点を補う、前例のないデータセットです。このデータセットは、活動認識、身体のポーズ推定、AIコーチングなどの多くの領域で応用され、その先にある、多モーダル活動、自己-外向きなどの研究の推進力となると研究者たちは信じています。

「Amazon SageMakerは、企業がユーザーをSageMakerにオンボードするために、SageMakerドメインのセットアップを簡単化します」

機械学習(ML)の採用を規模化するにつれて、組織は新たなインフラストラクチャを効率的かつ信頼性のある方法で展開し、ML環境へのチームのオンボードを求めていますその中でも、ユーザーの役割と活動に基づいた認証と詳細な権限設定の構築は一つの課題です例えば、MLOpsエンジニアは通常、モデルの展開活動を行います

オープンLLMリーダーボード:DROPディープダイブ

最近、新たに3つの新基準がOpen LLM Leaderboardに追加されました。Winogrande、GSM8k、そしてDROPです。これらはEleutherAI Harnessの再現実装を使用しています。DROPのスコアをざっと見てみると、f1スコアでほとんどのモデルが10点以下という奇妙な現象が起こっていることがわかりました。私たちはこの問題を深く掘り下げ、何が起こっているのかを理解するために調査を行いました。一緒に調査結果を見ていきましょう! 初期の観察結果 DROP(段落に対する離散的な推論)は、モデルが英語の段落から関連する情報を抽出し、それらに対して離散的な推論手法(例えば、ソートやアイテムの数え上げなどを行い、正解にたどり着く)を実行する必要がある評価です(例は下の表を参照してください)。使用される評価指標はカスタムのf1スコアと完全一致スコアです。 DROPをOpen LLM Leaderboardに3週間前に追加しましたが、事前学習モデルのf1スコアは予想外の傾向を示しました。DROPのスコアをARC、HellaSwag、TruthfulQA、MMLUのリーダーボードの元々の平均(モデル全体のパフォーマンスの合理的な代理)と比較したとき、優れたモデルほどDROPのスコアも良い関連性があると予想していました。しかし、それは一部のモデルにしか当てはまらず、他のすべてのモデルのDROPのf1スコアは10点未満でした。 正規化の問い合わせ この驚くべき振る舞いに対する最初の深い調査中に、正規化ステップが意図した通りに機能していない可能性があることがわかりました。いくつかのケースでは、正規化が正しい数値の回答を無視してしまっていました。具体的には、数値の回答の後に空白文字(スペース以外の改行など)が続いていた場合に正規化が無視されていました。以下に例を示します。生成結果が10\n\nPassage: The 2011 census recorded a population of 1,001,360で、正解が10である場合を見てみましょう。 正規化は生成結果と正解の両方に対して複数のステップで行われます: 区切り文字での分割 |、-、または. を使って分割します。生成結果の先頭のシーケンス 10\n\nPassage:…

「SageMakerキャンバスモデルリーダーボードを使用して、高度な設定を持つ機械学習モデルを構築し、評価します」

「Amazon SageMaker Canvas は、アナリストや市民データサイエンティストが、自身のビジネスニーズに合わせた正確な機械学習(ML)の予測を生成するためのノーコードの作業スペースです今日から、SageMaker Canvas は、アンサンブルまたはハイパーパラメータの最適化といった高度なモデルビルドの設定、トレーニングと検証データの分割比率のカスタマイズなどをサポートしています」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us