Learn more about Search Results ページ
- You may be interested
- 「1または0へ:画像分類におけるピクセル...
- このAI論文は、医療の視覚的な質問応答に...
- AIの台頭が犬食い犬のテック産業を牽引し...
- 「私はデータクリーニングのタスクでChatG...
- 「ソーシャルメディアと機械学習を使用し...
- 「2023年の市場で利用可能な15の最高のETL...
- 「Amazon Bedrockを使用した生成型AIアプ...
- 「GPT-4V(ビジョン)のコンセプトを理解...
- 「2024年に使用するためのトップ10のリア...
- 「Amazon SageMakerは、企業がユーザーをS...
- 「Google DeepMindの研究者たちは、PROmpt...
- トランスフォーマーにおけるセルフアテン...
- 「Amazon Web Servicesでの生成型AIアプリ...
- なぜ無料のランチがあるのか
- アマゾンの研究者たちは、「HandsOff」と...
「2024年のデータエンジニアリング&AI Xイノベーションサミットを発表します」
「私たちが4月にボストンで開催されるODSC Eastと共に開催される2つのイベントを発表できることは、もっと興奮しませんそれは、データエンジニアリングサミットとAi Xイノベーションサミットですこれら2つの共同開催イベントは、これらの分野を形作るトピックとトレンドにさらに深く立ち入る機会を提供しています学んでください...」
ムーブワークスのCEO兼創業者であるBhavin Shah—シリコンバレーの起業の旅、AIのスケーリングの課題、イノベーション文化、戦略的パートナーシップ、規制上のハードルの克服、ユーザーとのAIとの対話、エンタープライズの将来のビジョン
この洞察に富んだインタビューでは、MoveworksのCEO兼創設者であるBhavin Shahの起業の旅を探索します Bhavinは、シリコンバレーのルーツに深く立ち入り、初期の経験(特にSteve Wozniakとの思い出深い出会い)がMoveworksの創設への道を築いた様子を詳しく説明していますこの会話は彼のキャリアのさまざまな段階をたどります... MoveworksのCEO兼創設者であるBhavin Shah — シリコンバレー、起業の旅、AIのスケーリングの挑戦、イノベーション文化、戦略的パートナーシップ、規制のハードルの克服、ユーザーAIインタラクション、エンタープライズの未来のビジョン 読む 更に »
IBMとMETAが責任あるイノベーションのためのAI連携を結成
責任あるAIイノベーションへの重要な一歩として、IBMとMetaは共同でAIアライアンスを立ち上げました。この連携により、世界中の50以上の有名な組織が結集しています。この協力の目的は、人工知能(AI)におけるオープンで透明性のあるイノベーションを促進することです。重点は安全性、多様性、経済機会に置かれています。このアライアンスには、AMD、CERN、Dell Technologies、NASA、Oracleなどの有名な組織、さらに多くの主要な大学や研究機関が含まれています。 協力的なイノベーションの必要性 AIの進化は前例のない機会を提供し、私たちの生活、仕事、交流方法を変革しています。個別の組織がオープンな科学と技術に取り組む一方で、AIアライアンスは協力の重要性を強調しています。開発者、研究者、採用者を結集することで、アライアンスはイノベーションの加速、リスクの特定、製品が市場に出る前の責任あるAIの開発を目指しています。 目標と焦点領域 アライアンスは、その使命をガイドするための明確な目標を定めています。アライアンスは、グローバルなAIシステム開発のためのベンチマーク、標準、ツール、リソースを開発する予定です。さらに、オープンな基盤モデルを進め、活気のあるAIハードウェアアクセラレータエコシステムを育成することを目指しています。また、グローバルなAIスキルの構築を支援し、教育コンテンツを開発します。これらの取り組みは、公共の議論と政策立案に貢献することを目指しています。 AIアライアンスは、自らの使命をガイドするために明確な目標を設定しています: 1. ベンチマークと評価基準: 安全性、セキュリティ、信頼性の確保を含む、責任あるAIシステム開発を支援するために、ツールとリソースをグローバルに開発します。 2. オープンな基盤モデル: 気候、教育などの社会的課題に対処するため、多様なオープンな基盤モデルの進化を促進します。 3. AIハードウェアアクセラレータエコシステム: 必須の有用なソフトウェア技術を向上させることにより、活気のあるAIハードウェアアクセラレータエコシステムを育成します。 4. グローバルなAIスキルの構築: 基盤となるAIモデルやツールの研究プロジェクトへの貢献を行うため、探索的な研究をサポートし、学術コミュニティと連携します。 5. 教育コンテンツとリソース: AIの利点、リスク、規制について、公衆や政策立案者に情報を提供するコンテンツを開発します。 6. オープンな開発イニシアチブ:…
「イノベーションと持続可能性のバランス:病理学における環境責任に対する現実的なアプローチ」
この研究は、病理学における重大な懸念である深層学習の炭素排出量(CO2eq)に焦点を当てています。この環境への影響は、医療応用における深層学習の広範な普及において潜在的な障害となります。そのため、持続可能な取り組みの迫切な必要性が生じています。世界は医療の技術革新にますます依存する中で、環境への影響を理解し、軽減することが重要です。 現在の深層学習モデルアーキテクチャの軌跡は、複雑さの増大という傾向を示しています。異なる機関からの研究者チームは、この発展とその環境への潜在的な影響を詳細に調査しています。しかし、彼らはモデル選択における戦略的な転換を提案することで、説得力のある解決策を提示しています。研究者たちは、最新かつ最大のモデルに重点を置くのではなく、計算量の少ないモデルを優先することを提案しています。この戦略的アプローチにより、エネルギー消費を削減し、モデルの最適なパフォーマンスを維持しながら、計算効率を向上させるために、不要なパラメータを外科的に除去するモデル削減の概念が導入されます。 提案された解決策は、技術革新と環境責任をバランスさせるためのいくつかの重要な戦略から成り立っています。重要な側面のひとつは、特に病理学において大型の全スライド画像(WSIs)が一般的である場合、入力データの削減です。研究者たちは、専用の組織検出深層学習モデルによる組織のない領域の自動的な除外を推奨しています。さらに、研究は、組織内で最小限に必要な領域(ROI)の選択の重要性を強調しており、プロセスをさらに効率化し、排出物を大幅に削減しています。 計算量の少ないモデルを選択することの重要性は、深層学習の環境への影響に深い影響を与えます。研究者たちは、新しいかつ大きなモデルが常に以前のモデルに比べて優れているという仮定が特定のタスクにおいては成り立たない可能性があると主張しています。以前の調査結果によれば、より単純な深層学習モデルは、さまざまな病理学のタスクにおいて、より高度なモデルと比較して同等またはより優れたパフォーマンスを発揮することができると示唆されています。特に、トレーニング可能なパラメータが少ない相対的にシンプルな深層学習モデルは、より深いモデルよりも優れたCO2eq排出量を大幅に削減しながら、性能を維持します。 さらに、研究はモデル剪定という概念を導入し、持続可能性を向上させる別の手段としています。モデル剪定とは、非必須のパラメータを戦略的に除去することを指し、研究チームの調査結果によれば、最大40%の剪定を施した分類モデルは、剪定を施さない対照群と比較して、同じ精度を保ちながらCO2eq排出量を20〜30%削減することができました。この発見は、環境に持続可能な深層学習を確保するための戦略的なモデル開発の重要性を示しています。 結論として、この研究は、技術の進歩と病理学における環境責任との重要な交差点を浮かび上がらせています。提案された手法は、効率を損なうことなく、深層学習の生態学的影響に取り組むための実用的で環境に配慮したアプローチを提供しています。医療コミュニティが技術革新を進めるにあたり、この研究は、研究者や産業が持続可能性を優先し、イノベーションを追求するためのパラダイムシフトを呼びかける旗印となります。これらの実践を採用することで、医療技術の限界を押し広げながら環境への影響を軽減する微妙なバランスが実現され、より持続可能な医療革新の未来が保証されます。
新しいツールと機能の発表:責任あるAIイノベーションを可能にする
生成AIの急速な成長は、有望な新しいイノベーションをもたらし、同時に新たな課題も引き起こしていますこれらの課題には、生成AI以前から存在したバイアスや説明可能性などの共通のものだけでなく、基盤モデル(FMs)に固有のものも含まれますこれには、幻覚や有害性などが含まれますAWSでは、責任を持って生成AIの開発に取り組んでいます[…]
AWS ジェネラティブ AI イノベーションセンターのアンソロポジック・クロード向けのカスタムモデルプログラムをご紹介します
2023年6月のローンチ以来、AWSジェネレーティブAIイノベーションセンターのストラテジスト、データサイエンティスト、機械学習エンジニア、ソリューションアーキテクトのチームは、世界中の何百もの顧客と協力し、彼らがジェネレーティブAIのパワーを活用したヘルプメイクしたソリューションを着想し、優先させ、構築するのを支援してきました顧客は私たちと密接に協力して、ユースケースを重視しました[...]
「変革を受け入れる:AWSとNVIDIAが創発的なAIとクラウドイノベーションを進める」
Amazon Web ServicesとNVIDIAは、最新の生成AI技術を世界中の企業にもたらします。 AIとクラウドコンピューティングを結び付けることで、NVIDIAの創設者兼CEOであるジェンセン・ファングとAWSのCEOであるアダム・セリプスキーが火曜日にラスベガスのヴェネチアンエキスポセンターで開催されたAWS re:Invent 2023のステージで合流しました。 セリプスキーは、「AWSとNVIDIAのパートナーシップの拡大を発表できることに「興奮している」と述べ、高度なグラフィックス、機械学習、生成AIインフラストラクチャを提供する新しい製品を提供する予定です。 2社は、AWSが最新のNVIDIA GH200 NVL32 Grace Hopper Superchipと新しいマルチノードNVLinkテクノロジーを採用する最初のクラウドプロバイダであること、AWSがNVIDIA DGX CloudをAWSに導入していること、また、AWSがNVIDIAの人気のあるソフトウェアライブラリを一部統合していることを発表しました。 ファングは、NVIDIAの主要なライブラリがAWSと統合されていることを強調し、データ処理、量子コンピューティング、デジタルバイオロジーなどの領域に対応するNVIDIA AI EnterpriseからcuQuantum、BioNeMoまでの範囲が補完されていることを説明しました。 このパートナーシップにより、AWSは数百万人の開発者とこれらのライブラリを使用している約40,000社の企業にアクセスが開放されるとファングは述べ、AWSがNVIDIAの新しいL4、L40S、そしてまもなくH200 GPUも含めたクラウドインスタンスの提供を拡大していることを喜んでいると付け加えました。 その後、セリプスキーは、AWSデビューとなるNVIDIA GH200 Grace Hopper…
「Amazon Bedrock と Amazon Location Service を使用したジオスペーシャル生成AI」
今日、ジオスペーシャルのワークフローは、通常、データの読み込み、変換、そしてマップ、テキスト、またはチャートなどの視覚的インサイトの生成から構成されます生成AIは、これらのタスクを自律エージェントを介して自動化することができますこの投稿では、Amazon Bedrockの基本モデルを使用して、ジオスペーシャルタスクを完了するためにエージェントにパワーを与える方法について説明しますこれらのエージェントはさまざまなタスクを実行することができます[...]
MicrosoftエンジニアのAIイノベーションとリーダーシップへのガイド
「マイクロソフトのシニアソフトウェアエンジニア、マナス・ジョシとともにAIイノベーションの洞察に飛び込もう:次世代のための技術、成功、教えの旅」
「AIのトレーニングAI:ゲータートロングPTがフロリダ大学の医療AIのイノベーションの最前線に」
臨床データが少ない状況でAIに臨床言語を理解させるにはどうすればいいのでしょうか?別のAIを訓練して、訓練データを合成します。 人工知能は医学の方法を変えつつあり、様々な臨床業務にますます使われています。 これは生成AIやGatorTronGPTのようなモデルによって推進されています。GatorTronGPTはフロリダ大学のHiPerGator AIスーパーコンピュータで訓練され、Nature Digital Medicine Thursdayで紹介された論文で詳細が説明されています。 GatorTronGPTは臨床データに基づいて訓練された大規模な言語モデル(LLMs)の一つです。研究者たちは、GPT-3のフレームワークを使用してこのモデルを訓練しました。ChatGPTでも使用されているフレームワークです。 この目的のために、彼らは2770億単語の巨大なコーパスを使用しました。訓練データには、非特定化された臨床ノートから820億単語と、様々な英文書から1950億単語が含まれています。 しかし驚きはここにあります。研究チームはGatorTronGPTを使用して、約200億語の合成臨床テキストコーパスを生成しました。この合成臨床テキストは、臨床要素に焦点を当て、医師が書いた本物の臨床ノートのように読むことができます。 この合成データは、GatorTron-SというBERTベースのモデルの訓練に使用されました。 比較評価では、GatorTron-Sは臨床概念の抽出や医療関連の抽出などの臨床自然言語理解のタスクで優れたパフォーマンスを示しており、8200億単語の臨床データセットで訓練された元のBERTベースのモデルであるGatorTron-OGが打ち立てた記録を上回っています。 さらに驚くべきことに、これを少ないデータで実現できました。 GatorTron-OGとGatorTron-Sのモデルは、フロリダ大学のHiPerGatorスーパーコンピュータでNVIDIAのMegatron-LMパッケージを実行する560台のNVIDIA A100 Tensor Core GPUで訓練されました。このプロジェクトで使用されたMegatron LMフレームワークの技術は、後にNVIDIA NeMoフレームワークに組み込まれ、GatorTronGPTの最新の研究にも活用されています。 LLMsによる合成データの使用は、いくつかの課題に対処するものです。LLMsには膨大な量のデータが必要であり、品質の高い医療データが限られています。 また、合成データはHIPAAなどの医療プライバシー規制に準拠したモデル訓練を可能にします。 GatorTronGPTの研究は、昨年ChatGPTの急速な普及と共に登場したLLMsが、さらに多くの分野で活用される可能性を示す最新の例です。 また、加速されたコンピューティングによって実現される新しいAI技術の進展の一例でもあります。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.