Learn more about Search Results ドキュメンテーション

🤗 Datasetsでの新しいオーディオとビジョンのドキュメンテーションを紹介します

オープンで再現可能なデータセットは、良い機械学習を進めるために不可欠です。同時に、データセットは大規模な言語モデルの燃料として非常に大きく成長しています。2020年、Hugging Faceは🤗 Datasetsというライブラリを立ち上げ、以下のために専用のライブラリを提供しています: 1行のコードで標準化されたデータセットにアクセスを提供すること。 大規模なデータセットを迅速かつ効率的に処理するためのツールを提供すること。 コミュニティのおかげで、私たちは多言語および方言のNLPデータセットを数百追加しました! 🤗 ❤️ しかし、テキストデータセットは始まりに過ぎません。データは🎵 音声、📸 画像、音声とテキストの組み合わせ、画像とテキストなど、より豊かな形式で表現されています。これらのデータセットでトレーニングされたモデルは、画像の内容を説明したり、画像に関する質問に答えたりするなど、素晴らしいアプリケーションを可能にします。 🤗 Datasetsチームは、これらのデータセットタイプとの作業をできるだけ簡単にするためのツールと機能を開発してきました。音声および画像データセットの読み込みと処理についての詳細を学ぶための新しいドキュメントも追加しました。 クイックスタート クイックスタートは、ライブラリの機能についての要点を把握するために新しいユーザーが最初に訪れる場所の一つです。そのため、クイックスタートを更新して、🤗 Datasetsを使用して音声および画像データセットを処理する方法を含めました。作業したいデータセットの形態を選択し、データセットを読み込んで処理し、PyTorchまたはTensorFlowでトレーニングに使用する準備ができるまでのエンドツーエンドの例を参照してください。 クイックスタートには、新しいto_tf_dataset関数も追加されています。この関数は、データセットをtf.data.Datasetに変換するために必要なコードを自動的に記述します。これにより、データセットからシャッフルしてバッチを読み込むためのコードを書く必要がなくなります。データセットをtf.data.Datasetに変換した後は、通常のTensorFlowまたはKerasのメソッドでモデルをトレーニングすることができます。 今日はクイックスタートをチェックして、さまざまなデータセット形態での作業方法を学び、新しいto_tf_dataset関数を試してみましょう! データセットの冒険を選ぶ! 専用ガイド 各データセット形態には、それらを読み込んで処理する方法に固有のニュアンスがあります。例えば、音声データセットを読み込む場合、音声信号はAudio機能によって自動的にデコードおよびリサンプリングされます。これはテキストデータセットを読み込む場合とはかなり異なります! モダリティ固有のドキュメントをより見つけやすくするために、各モダリティごとに専用のセクションが新たに設けられ、各モダリティの読み込みと処理方法を示すガイドが提供されています。データセット形態での作業に関する特定の情報を探している場合は、まずこれらの専用セクションをご覧ください。一方で、特定ではなく広く使用できる関数は一般的な使用方法のセクションに記述されています。このような方法でドキュメントを再編成することで、将来サポートする予定の他のデータセット形式にもよりスケーラブルに対応できるようになります。 ガイドは、🤗 Datasetsの最も重要な側面をカバーするセクションに整理されています。…

「Plotlyを使用したダイナミックなコロプレス可視化の作成」

データを視覚化することは、データサイエンティストによって見過ごされがちなステップですデータを分析し、整理してわかりやすい形にすることで、物語を伝えることができますすべての技術的な詳細を取り除くことで...

「FinTech API管理におけるAIの力を解き放つ:製品マネージャーのための包括的なガイド」

この包括的なガイドでは、AIが金融技術のAPI管理に果たす変革的な役割を探求し、各セクションごとに実世界の例を提供していますAIによる洞察力や異常検知からAIによる設計、テスト、セキュリティ、そして個人化されたユーザーエクスペリエンスまで、金融技術のプロダクトマネージャーはAIの力を活用してオペレーションを最適化し、セキュリティを強化し、提供を行わなければなりません

「DevOps 2023年の状況報告書:主要な調査結果と洞察」

年次調査の結果が発表されました画期的な発見がありますこのレポートは、AIとドキュメンテーションが生産性と仕事の満足度に与える影響を詳しく調査しています

すべての開発者が知るべき6つの生成AIフレームワークとツール

この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください

「Pythonドキュメントの向上:ソースコードのリンク設定のステップバイステップガイド」

「Sphinxを使用してGitHubのソースコードにPythonのドキュメントをリンクさせる方法を学びましょうクリアでインタラクティブなドキュメンテーションを求める開発者のための実践的なガイドです」

「生成型AIアプリケーションのためのプレイブック」

この記事では、Generative AIアプリケーションを実装する際の主要な考慮事項と、ビジョンを行動に変えるために人間の関与が果たす重要な役割について議論しています

『ChatGPTを活用したソフトウェアテストとデータ分析の効率化』

この記事では、ChatGPTのソフトウェアテストとデータ分析への応用について掘り下げ、効率性、正確性、革新性を高める可能性を探求します

「部分情報分解とは何か、そして特徴がどのように相互作用するのか」

ターゲット変数が複数の情報源に影響を受ける場合、各情報源が全体的な情報にどのように寄与しているかを理解することは重要です(しかし、単純な問題ではありません)この中で...

「ノーコードアプリビルダーのトップ10(2023年12月)」

テクノロジーの絶えず進化する風景の中で、ノーコードアプリビルダーの台頭は、アプリ開発の民主化の証ですかつてはベテランプログラマーやソフトウェア開発者の領域にのみデジタルソリューションを作成する時代が終わりましたノーコードプラットフォームは、起業家やビジネスプロフェッショナル、クリエイティブな思考を持つ人々に扉を開いています[…]

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us