Learn more about Search Results デスクトップ
- You may be interested
- ガローデットの最新技術革新はヘルメットです
- 「AIとブロックチェーンの交差点を探る:...
- MITの科学者たちは、生物学の研究のための...
- ランウェイの新しい「モーションブラシ」...
- 「マルチプレーナーUNet:すべての3Dセグ...
- 「PythonとSimpleITKを使用した3D医療画像...
- 私たちが知っていることを蒸留する
- このAI論文は、ChatGPTを基にしたテキスト...
- 変革の風 生成AIがサイバーセキュリティを...
- 「次のデータサイエンスプロジェクトを迅...
- マイクロソフトAIチームがPhi-2を紹介:2....
- ワシントン大学とAI2の研究者が、VQAを介...
- AIがオンエア中:世界初のRJボット、アシ...
- Pythonにおける例外とエラー処理
- PEFTの概要:最先端のパラメータ効率の良...
元アップル社員が生成型AIをデスクトップにもたらす方法
常に進化するテックのランドスケープの中で、元Appleの従業員であるコンラッド・クレイマー、キム・ベベレット、アリ・ウェインスタインの3人は、デスクトップにおける生産性を再定義する使命に取り組んでいます。彼らのスタートアップ、ソフトウェアアプリケーションズ社は、生成的AIの力を利用して、ワークフローのショートカットを作り出し、世界中のユーザーのタスクを効率化することを約束しています。 ビジョナリースタートアップの誕生 ソフトウェアアプリケーションズ社は、単なる他のテックスタートアップではありません。それは、デスクトップコンピューティングの未来を見て、それを実現しようと決意した元Appleの三人のビジョナリーの作品です。彼らの目標はシンプルでありながら野心的です:生成的AIを日常的なデスクトップアプリケーションに統合し、エンドユーザーにとって複雑なタスクを簡単にすることです。この三人はすでにOpenAIのAltman、FigmaのCEOであるディラン・フィールド、シリコンバレーの他の著名な人々から650万ドルの資金を調達しています。 新たなフロンティア 生成的AIはこのスタートアップの革新の基盤です。具体的なプログラミングが行われていない場合にも、生成的AIはデータから学び、作られていないコンテンツを作り出すことができます。つまり、このような技術の潜在的な応用範囲は広範であり、平凡なタスクの自動化から簡単なコマンドで複雑なレポートを生成することまで可能です。 詳細はこちらをご覧ください:生成的AIとは何か、そしてそれはどのように機能するのか ワークフローショートカット:ゲームチェンジャー このスタートアップの看板製品は、ワークフローショートカットに重点を置いています。これは通常のキーボードショートカットとは異なり、インテリジェントで文脈を理解し、適応するものです。ユーザーの利用習慣と好みを理解することで、これらのショートカットはニーズを予測し、単一のコマンドで複数のステップを実行することができます。これにより、貴重な時間を節約し、ユーザーの認知負荷を減らすことができます。 私たちのコメント ソフトウェアアプリケーションズ社によるこのイニシアチブは、生成的AIの変革的な力の証です。彼らはAppleの専門家の背景を活かして、デスクトップコンピューティングの将来において定番となる可能性のある製品を提供する準備が整っています。彼らが技術を開発し、磨き上げていくにつれ、私たちは生産性とワークフロー管理への影響を心待ちにしています。
「DeepMindがデスクトップコンピュータ上で正確に天気予報を予測する」
「Google DeepMindは、最高の従来の予測ツールよりも優れた機械学習気象予測モデルを開発しました」
2024年にフォローするべきデータサイエンスのトップ12リーダー
データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…
「パブリックスピーキングのための5つの最高のAIツール(2023年12月)」
「人工知能の領域において、公の演説にAIツールを応用することは大きな進歩を意味しますこれらのツールは、スピーキングスキルの向上に役立つ実用的なソリューションを提供し、あらゆるレベルのスピーカーが直面する共通の課題に対処しますAI技術を活用することで、これらのツールはスピーチのデリバリー、コンテンツの構成、聴衆の関与に関する貴重な洞察を提供します私たちの探究...」
「RustコードのSIMD高速化のための9つのルール(パート2)」
SIMDを使用してRustコードを高速化するための9つの基本ルールを探求してくださいcoresimdについて学び、最適化技術を学びながらパフォーマンスを7倍に向上させましょう
「デジタル時代のユーザーセントリックデザイン:ウェブデザインとUI/UX体験に影響を与えるトレンド」
ユーザー体験に重点を置くウェブデザインの最新トレンドを紹介しましょうダークモードの普及から3D要素の統合まで、魅力的な要素を解説します
AMD + 🤗 AMD GPUでの大規模言語モデルの即戦力アクセラレーション
今年早些时候,AMD和Hugging Face宣布合作伙伴关系在AMD的AI Day活动期间加速AI模型。我们一直在努力实现这一愿景,并使Hugging Face社区能够在AMD硬件上运行最新的AI模型,并获得最佳性能。 AMD正在为全球一些最强大的超级计算机提供动力,其中包括欧洲最快的超级计算机LUMI,该计算机拥有超过10,000个MI250X AMD GPUs。在这次活动中,AMD公布了他们最新一代的服务器级GPU,AMD Instinct™ MI300系列加速器,很快将正式推出。 在本博客文章中,我们将提供关于在AMD GPUs上提供良好开箱即用支持以及改进与最新服务器级别的AMD Instinct GPUs互操作性的进展报告。 开箱即用加速 你能在下面的代码中找到AMD特定的代码更改吗?别伤眼睛,跟在NVIDIA GPU上运行相比,几乎没有。 from transformers import AutoTokenizer, AutoModelForCausalLMimport torchmodel_id = "01-ai/Yi-6B"tokenizer…
「GoogleのNotebookLMを使用したデータサイエンス:包括的ガイド」を使ってみよう
このブログ記事では、NotebookLMの機能、制約、および研究者や科学者にとって重要な高度な機能について探求します
「Pixel 8 Pro」という初めてのAI搭載スマートフォンは、現在Gemini Nanoで稼働しており、さらにAIのアップデートがPixelポートフォリオにも導入されています」
ニューフィーチャードロップは、Pixelハードウェアへのアップデートをもたらしますさらに、Gemini Nanoは、Pixel 8 Proのデバイス内生成AI機能をパワーアップします
2024年の予測17:RAG to RichesからBeatlemaniaとNational Treasuresへ
メリアム・ウェブスターの前に譲れ:今年、企業は年間のワードに追加するための多くの候補を見つけました。「生成的AI」と「生成的事前学習変換器」の後には、「大規模言語モデル」と「検索増強生成」(RAG)のような用語が続き、さまざまな産業が変革的な新技術に注目しました。 生成的AIは今年の初めにはまだ注目されていなかったが、終わりには大きなインパクトを与えました。多くの企業が、テキスト、音声、動画を取り込み、生産性、イノベーション、創造性を革新する新しいコンテンツを生み出す能力を利用するために全力で取り組んでいます。 企業はこのトレンドに乗っています。OpenAIのChatGPTなどのディープラーニングアルゴリズムは、企業のデータをさらにトレーニングすることで、63のビジネスユースケース全体で年間2.6兆ドルから4.4兆ドル相当の価値を生み出すことができると、マッキンゼー・アンド・カンパニーによって評価されています。 しかし、大量の内部データを管理することは、AIの拡大における最大の障害とされてきました。NVIDIAのAIの専門家の一部は、2024年は友達との電話に関するすべてだと予測しており、クラウドサービスプロバイダーやデータストレージおよび分析会社など、大規模データを効率的に処理し、調整し、展開するノウハウを持つ企業や個人とのパートナーシップや協力関係を構築することが重要だと述べています。 大規模言語モデルがその中心にあります。NVIDIAの専門家によると、LLM研究の進展は、ますますビジネスや企業向けのアプリケーションに適用されるようになります。RAG、自律型インテリジェントエージェント、マルチモーダルインタラクションのようなAIの機能は、ほぼすべてのプラットフォームを介してよりアクセス可能で容易に展開できるようになります。 NVIDIAの専門家の予想を聞いてください: MANUVIR DASエンタープライズコンピューティング部門副社長 一揃いは全てに合わない:カスタマイズが企業にやってきます。企業は1つまたは2つの生成的AIアプリケーションを持つのではなく、さまざまな部門に適した独自のデータを使用した何百ものカスタマイズされたアプリケーションを持つことになるでしょう。 これらのカスタムLLMは、稼働中にデータソースを生成的AIモデルに接続するためのRAGの機能を備え、より正確で明確な応答を提供します。Amdocs、Dropbox、Genentech、SAP、ServiceNow、Snowflakeなどのリーディングカンパニーは、既にRAGとLLMを使用した新しい生成的AIサービスを構築しています。 オープンソースソフトウェアが先頭を走っています:オープンソースの事前学習モデルのおかげで、特定のドメインの課題を解決する生成的AIアプリケーションがビジネスの運用戦略の一部になるでしょう。 企業がこれらの先行モデルをプライベートまたはリアルタイムのデータと組み合わせると、組織全体で加速された生産性とコストの利益を見ることができるようになります。クラウドベースのコンピューティングやAIモデルファウンドリーサービスから、データセンターやエッジ、デスクトップまで、ほぼすべてのプラットフォームでAIコンピューティングとソフトウェアがよりアクセス可能になります。 棚卸しのAIとマイクロサービス:生成的AIは、開発者が複雑なアプリケーションを構築しやすくするアプリケーションプログラミングインターフェース(API)エンドポイントの採用を促しています。 2024年には、ソフトウェア開発キットとAPIが進化し、開発者がRAGなどのAIマイクロサービスを利用してオフシェルフのAIモデルをカスタマイズすることができるようになります。これにより、企業は最新のビジネス情報にアクセスできる知能を持つアシスタントや要約ツールを使用して、AIによる生産性の完全な可能性を引き出すことができます。 開発者は、これらのAPIエンドポイントをアプリケーションに直接埋め込むことができ、モデルとフレームワークをサポートするために必要なインフラストラクチャの維持について心配する必要はありません。エンドユーザーは、自分のニーズに適応するより直感的でレスポンシブなアプリケーションを体験することができます。 IAN BUCKハイパースケールとHPC部門副社長 国家的な財産:人工知能は新しい宇宙競争となり、すべての国が研究と科学の重要な進展を推進し、GDPを向上させるために自国の卓越の中心を作ろうとしています。 数百個のアクセラレートされた計算ノードを使用するだけで、国は高効率で大規模なパフォーマンスを発揮するエクサスケールAIスーパーコンピュータを迅速に構築することができます。政府資金による創発型AI卓越センターは、新しい雇用を創出し、次世代の科学者、研究者、エンジニアを育成するためにより強力な大学のプログラムを構築することで、国の経済成長を後押しします。 飛躍的な進歩:企業リーダーは、二つの主要な要因に基づいて量子コンピューティングの研究イニシアチブを立ち上げます。まず、従来のAIスーパーコンピュータを使用して量子プロセッサをシミュレートする能力、そして、ハイブリッドクラシカル量子コンピューティングのためのオープンかつ統一された開発プラットフォームの利用が可能になることです。これにより、開発者は、量子アルゴリズムを構築するためにカスタムで特殊な知識を必要とせず、標準のプログラミング言語を使用することができます。 かつてはコンピュータ科学の奇妙なニッチと考えられていた量子コンピューティングの探求は、素材科学、製薬研究、サブアトミック物理学、物流などの分野で急速な進歩を追求する企業がアカデミアや国立研究所に加わることで、より一般的なものになるでしょう。 KARI BRISKIAIソフトウェア担当副社長 RAGから富へ:2024年、企業がこれらのAIフレームワークを採用するにつれ、再試行補完生成はさらに注目されるでしょう。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.