Learn more about Search Results テンソルパラレリズム

「Amazon SageMakerを使用して、ファルコンモデルのパフォーマンスを向上させる」

大型言語モデル(LLM)をテキスト生成AIアプリケーションのホスティングするための最適なフレームワークと設定は何ですか? LLMを提供するための選択肢が豊富であるにもかかわらず、モデルの大きさ、異なるモデルアーキテクチャ、アプリケーションのパフォーマンス要件などにより、この問題に答えることは困難です Amazon SageMaker Large Model Inference[…]

DeepSpeedとAccelerateを使用した非常に高速なBLOOM推論

この記事では、176BパラメータのBLOOMモデルを使用してトークンごとのスループットを非常に高速に取得する方法を紹介します。 モデルは352GBのbf16(bfloat16)ウェイト(176*2)を必要とするため、最も効率的なセットアップは8x80GBのA100 GPUです。また、2x8x40GBのA100または2x8x48GBのA6000も使用できます。これらのGPUを使用する主な理由は、この執筆時点ではこれらのGPUが最大のGPUメモリを提供しているためですが、他のGPUも使用できます。たとえば、24x32GBのV100を使用することもできます。 単一のノードを使用すると、通常、最速のスループットが得られます。なぜなら、ほとんどの場合、ノード内のGPUリンクハードウェアの方がノード間のものよりも速いためですが、常にそうとは限りません。 もしハードウェアがそれほど多くない場合でも、CPUやNVMeのオフロードを使用してBLOOM推論を実行することは可能ですが、もちろん、生成時間は遅くなります。 また、GPUメモリの半分の容量を必要とする8ビット量子化ソリューションについても説明します。これにはBitsAndBytesとDeepspeed-Inferenceライブラリが必要です。 ベンチマーク さらなる遅延なしでいくつかの数値を示しましょう。 一貫性を保つために、この記事のベンチマークはすべて同じ8x80GBのA100ノードで実行され、512GBのCPUメモリを持つJean Zay HPCで行われました。JeanZay HPCのユーザーは、約3GB/sの読み取り速度(GPFS)で非常に高速なIOを利用しています。これはチェックポイントの読み込み時間に重要です。遅いディスクは読み込み時間が遅くなります。特に複数のプロセスでIOを同時に行っている場合はさらに重要です。 すべてのベンチマークは、100トークンの出力を貪欲に生成しています: Generate args {'max_length': 100, 'do_sample': False} 入力プロンプトはわずかなトークンで構成されています。以前のトークンのキャッシュもオンになっています。常にそれらを再計算すると非常に遅くなるためです。 まず、生成の準備が完了するまでにかかった時間(つまり、モデルの読み込みと準備にかかった時間)を見てみましょう: Deepspeed-Inferenceには、事前にシャードされたウェイトリポジトリが付属しており、読み込みに約1分かかります。Accelerateの読み込み時間も優れており、わずか2分です。他のソリューションはここでははるかに遅いです。 読み込み時間は重要であるかどうかは、一度読み込んだら追加の読み込みオーバーヘッドなしに繰り返しトークンを生成できるため、場合によります。 次に、トークン生成の最も重要なベンチマークです。ここでのスループット指標は単純であり、100個の新しいトークンを生成するのにかかった時間を100で割り、バッチサイズで割ったものです。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us