Learn more about Search Results ダウンロード
- You may be interested
- 「CityDreamerと出会う:無限の3D都市のた...
- なぜあなたのビジネスは生成型AIを活用す...
- 環境データサイエンス:イントロダクション
- 大規模言語モデルの探索 -Part 1
- 「NTUシンガポールの研究者がResShiftを導...
- JAXを使用してRL環境をベクトル化・並列化...
- Google DeepMindは、ChatGPTを超えるアル...
- 「トップ20のデータエンジニアリングプロ...
- ウェブと組み込みシステムにおけるRustの...
- 「DynamoDB vs Cassandra:あなたのビジネ...
- 「Neosyncをご紹介します:開発環境やテス...
- AIのアナロジカルな推論能力:人間の知能...
- 実際のデータなしで効率的なテーブルの事...
- 「AIとの親交を深める」
- エンターテイメントデータサイエンス:ス...
「Pythonを使用して、複数のファイル(またはURL)を並列でダウンロードする」
私たちはビッグデータの世界に生きていますしばしば、ビッグデータは小さなデータセットの大きなコレクションとして組織化されます(つまり、複数のファイルからなる1つの大きなデータセットです)これらのデータを入手することはしばしばイライラするものです...
「Llama 2をローカルでダウンロードしてアクセスする方法は2つあります」
メタの最新リリースであるLlama 2は、さまざまなユースケースにおいて人気を集め、非常に興味深いです7Bから始まる異なるサイズのLlama 2言語モデルをプリトレーニングおよびファインチューニングして提供しています
「偉大なる遺伝子データの漏洩:知っておくべきこと」
A class action lawsuit has been launched against a genetic testing company for the protection of personal genetic data that was unfortunately stolen.
「5つ星アプリを構築する:AIと自動化を利用したモバイルテストの向上」
ソフトウェア開発チームは、高品質なモバイルアプリ体験を提供するために、強力で低コストのツールが必要ですAIと自動化は解決策を提供します
マーク外:AI進捗競争におけるメトリクスゲーミングの落とし穴
「共産主義のネイル工場から資本主義のボット戦まで、この記事では、虚偽の基準や狭視的なハイプサイクルが意味のある進歩を阻害する永遠のリスクに焦点を当てています」
このAI論文では、ディープラーニングを通じて脳の設計図について探求します:神経科学とsnnTorch Pythonライブラリのチュートリアルから得た知見を活用してニューラルネットワークを進化させる
神経科学と人工知能の交差点では、特に「snnTorch」として知られるオープンソースのPythonライブラリの開発を通じて、顕著な進展が見られています。この革新的なコードは、脳の効率的なデータ処理方法に触発されたスパイキングニューラルネットワークをシミュレートするもので、UCサンタクルーズのチームの努力から生まれています。 過去4年間、このチームのPythonライブラリ「snnTorch」は、100,000を超えるダウンロードを誇って大きな注目を集めています。その応用は学術的な範囲を超えており、NASAの衛星追跡事業や半導体会社による人工知能用のチップの最適化など、多様なプロジェクトで有益な役割を果たしています。 IEEEの論文に最近掲載された「snnTorch」のコーディングライブラリは、脳の効率的な情報処理メカニズムを模倣したスパイキングニューラルネットワークの重要性を強調しています。彼らの主な目標は、脳の省電力処理を人工知能の機能性と融合させることで、両者の長所を活用することです。 snnTorchは、パンデミック中にチームのPythonコーディングの探求と電力効率の向上のために始まった情熱的なプロジェクトでした。今日、snnTorchは、衛星追跡からチップ設計までのさまざまなグローバルプログラミングプロジェクトで基礎的なツールとして確立されています。 snnTorchの優れた点は、そのコードとその開発に伴って編集された包括的な教育資料です。チームのドキュメントと対話型コーディング資料は、ニューロモーフィックエンジニアリングとスパイキングニューラルネットワークに関心を持つ個人のための入門点となり、コミュニティで貴重な資産となっています。 チームによって著されたIEEE論文は、snnTorchコードに補完される包括的なガイドです。非伝統的なコードブロックと主観的なナラティブを特徴とし、神経モーフィックコンピューティングの不安定な性質を正直に描写しています。これにより、コーディングの決定に不十分に理解された理論的な基盤と格闘する学生たちの苦悩を和らげることを意図しています。 教育リソースとしての役割に加えて、論文は、脳の学習メカニズムと従来の深層学習モデルとの隔たりを埋める視点も提供しています。研究者たちは、AIモデルを脳の機能と調整する課題について探究し、ニューラルネットワークでのリアルタイム学習と「一緒に発火して接続される」興味深い概念に重点を置いています。 さらに、チームはUCSCのGenomics InstituteのBraingeneersとの共同研究において、脳情報処理の洞察を得るために脳器官モデルを利用しています。この共同研究は、生物学と計算論的パラダイムの融合を象徴し、snnTorchの器官モデルのシミュレーション能力による脳発祥の計算の理解への大きな進歩となっています。 研究者の業績は、多様な領域をつなぐ協力的な精神を体現し、脳に触発されたAIを実用的な領域に推進しています。snnTorchの議論に特化した繁栄するDiscordとSlackチャンネルを通じて、この取り組みは産業と学術界の協力関係を促進し、snnTorchに関する熟練を求める求人募集内容にさえ影響を与え続けています。 UCサンタクルーズのチームによる脳に触発されたAIの先駆的な進展は、深層学習、神経科学、計算論的パラダイムのランドスケープを変革する可能性を示しています。
「DevOps 2023年の状況報告書:主要な調査結果と洞察」
年次調査の結果が発表されました画期的な発見がありますこのレポートは、AIとドキュメンテーションが生産性と仕事の満足度に与える影響を詳しく調査しています
Amazon DocumentDBを使用して、Amazon SageMaker Canvasでノーコードの機械学習ソリューションを構築してください
Amazon DocumentDB(MongoDB互換)とAmazon SageMaker Canvasの統合のローンチをお知らせできることを喜びますこれにより、Amazon DocumentDBのお客様はコードを書かずに生成AIや機械学習(ML)ソリューションを構築・使用することができますAmazon DocumentDBはフルマネージドのネイティブJSONドキュメントデータベースであり、重要な業務をスムーズかつ効率的に運用することができます
「安定拡散を使用したハイパーリアルな顔を生成する3つの方法」
あなたはベースモデルを使用してイメージを生成する方法を学び、画像の品質を向上するためにStable Diffusion XLモデルにアップグレードする方法、そして高品質の肖像画を生成するためにカスタムモデルを使用する方法を学びました
「オープンソースツールを使用して、プロのように音声をクローンし、リップシンク動画を作る方法」
紹介 AI音声クローンはソーシャルメディアで大流行しています。これにより、創造的な可能性が広がりました。ソーシャルメディアで有名人のミームやAI声の上書きを見たことがあるかもしれません。それがどのように行われているのか疑問に思ったことはありませんか?Eleven Labsなど、多くのプラットフォームがAPIを提供していますが、オープンソースソフトウェアを使用して無料で行うことはできるのでしょうか?短い答えは「YES」です。オープンソースには音声合成を実現するためのTTSモデルとリップシンクツールがあります。したがって、この記事では、音声クローンとリップシンクのためのオープンソースのツールとモデルを探求してみましょう。 学習目標 AI音声クローンとリップシンクのためのオープンソースツールを探求する。 FFmpegとWhisperを使用してビデオを転写する。 Coqui-AIのxTTSモデルを使用して声をクローンする。 Wav2Lipを使用してビデオのリップシンクを行う。 この技術の実世界での使用例を探求する。 この記事はData Science Blogathonの一環として公開されました。 オープンソーススタック 既にご存じのように、私たちはOpenAIのWhisper、FFmpeg、Coqui-aiのxTTSモデル、およびWav2lipを私たちの技術スタックとして使用します。しかし、コードに入る前に、これらのツールについて簡単に説明しましょう。そして、これらのプロジェクトの作者に感謝します。 Whisper: WhisperはOpenAIのASR(自動音声認識)モデルです。これは、多様なオーディオデータと対応するトランスクリプトを用いて、650,000時間以上のトレーニングを受けたエンコーダ-デコーダトランスフォーマーモデルです。そのため、オーディオからの多言語の転写に非常に適しています。 エンコーダは、30秒のオーディオチャンクのログメルスペクトログラムを受け取ります。各エンコーダブロックは、オーディオ信号の異なる部分を理解するためにセルフアテンションを使用します。デコーダは、エンコーダからの隠れ状態情報と学習済みの位置エンコーディングを受け取ります。デコーダはセルフアテンションとクロスアテンションを使用して次のトークンを予測します。プロセスの最後に、認識されたテキストを表すトークンのシーケンスを出力します。Whisperの詳細については、公式リポジトリを参照してください。 Coqui TTS: TTSはCoqui-aiのオープンソースライブラリです。これは複数のテキスト読み上げモデルをホストしています。Bark、Tortoise、xTTSなどのエンドツーエンドモデル、FastSpeechなどのスペクトログラムモデル、Hifi-GAN、MelGANなどのボコーダなどがあります。さらに、テキスト読み上げモデルの推論、調整、トレーニングのための統一されたAPIを提供しています。このプロジェクトでは、xTTSというエンドツーエンドの多言語音声クローニングモデルを使用します。これは英語、日本語、ヒンディー語、中国語などを含む16の言語をサポートしています。TTSについての詳細情報は、公式のTTSリポジトリを参照してください。 Wav2Lip: Wav2Lipは、「A Lip Sync…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.