Learn more about Search Results スライディングウィンドウ

「2023年、オープンLLMの年」

2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…

「CNNにおけるアトラウス畳み込みの総合ガイド」

イントロダクション コンピュータビジョンの領域において、畳み込みニューラルネットワーク(CNN)は画像解析と理解の領域を再定義しました。これらの強力なネットワークは、画像分類、物体検出、セマンティックセグメンテーションなどのタスクにおいて革新的な進展を達成しました。これらは、医療、自動運転などのさまざまな分野での応用の基盤を築きました。 しかし、よりコンテキストに対応した堅牢なモデルの需要が増えるにつれて、伝統的なCNN内の畳み込みレイヤーは、包括的なコンテキスト情報のキャプチャにおいて制限を受けています。これは、計算量の増加に伴わずにネットワークがより広いコンテキストを理解する能力を向上させるための革新的な手法の必要性をもたらしました。 ここで紹介するのは、伝統的な畳み込みレイヤー内の常識を覆した、画期的なアプローチであるAtrous Convolutionです。Atrous Convolution(拡張畳み込み)は、計算量やパラメータを大幅に増やすことなく、ネットワークがより広いコンテキストをキャプチャする能力を実現することで、ディープラーニングの世界に新たな次元をもたらしました。 学習目標 畳み込みニューラルネットワークの基礎を学び、ビジュアルデータを処理して画像を理解する方法を理解する。 Atrous Convolutionが従来の畳み込み方法を改善する方法を理解し、画像内のより大きなコンテキストをキャプチャする能力を把握する。 DeepLabやWaveNetなど、Atrous Convolutionを使用するよく知られたCNNアーキテクチャを探索し、そのパフォーマンスを向上させる方法を確認する。 Atrous ConvolutionがCNN内での応用の手法やコードスニペットを通じて実践的な例を通して理解する。 この記事はデータサイエンスのブログマラソンの一環として公開されました。 CNNの理解:動作原理 畳み込みニューラルネットワーク(CNN)は、主に画像やビデオなどのビジュアルデータの分析に特化したディープニューラルネットワークの一種です。彼らは人間の視覚システムに触発され、ビジュアルデータ内のパターン認識において非常に効果的です。以下に詳細を示します: 畳み込みレイヤー: CNNは複数のレイヤーで構成されており、畳み込みレイヤーがその核となっています。これらのレイヤーは、学習可能なフィルタを入力データに適用して、画像からさまざまな特徴を抽出します。 プーリングレイヤー: 畳み込み後、プーリングレイヤーを使用して空間的な次元を削減し、畳み込みレイヤーによって学習された情報を圧縮することがよくあります。一般的なプーリング操作には、最大プーリングや平均プーリングなどがあり、表現のサイズを縮小しながら必要な情報を保持します。 活性化関数: 畳み込みおよびプーリングレイヤーの後には、非線形の活性化関数(ReLUなどの整流線形ユニット)が使用されます。これにより、ネットワークはデータ内の複雑なパターンや関係性を学習することができます。 全結合レイヤー:…

「ハグフェース上のトップ10大きな言語モデル」

イントロダクション Hugging Faceは、自然言語処理の愛好家や開発者にとって宝庫となり、さまざまなアプリケーションに簡単に統合できる事前学習済み言語モデルの幅広いコレクションを提供しています。Large Language Models(LLM)の世界で、Hugging Faceは頼りになるプラットフォームとして際立っています。この記事では、Hugging Faceで利用可能なトップ10のLLMモデルを紹介し、言語理解と生成の進化する景色に貢献します。 さあ、始めましょう! Mistral-7B-v0.1 Mistral-7B-v0.1は、70億のパラメータを誇る大規模言語モデル(LLM)です。これは事前学習済みの生成テキストモデルとして設計されており、Llama 2 13Bが検証されたドメインで設定したベンチマークを上回ることで知られています。このモデルは、グループ化されたクエリアテンションやスライディングウィンドウアテンションなどの注意機構に特定の選択を行ったトランスフォーマーアーキテクチャに基づいています。Mistral-7B-v0.1は、Byte-fallback BPEトークナイザーも組み込んでいます。 ユースケースとアプリケーション テキスト生成:Mistral-7B-v0.1は、コンテンツ作成、創造的な文章作成、または自動ストーリーテリングなど、高品質のテキスト生成を必要とするアプリケーションに適しています。 自然言語理解:高度なトランスフォーマーアーキテクチャと注意機構を備えたこのモデルは、感情分析やテキスト分類などの自然言語理解を必要とするタスクに適用することができます。 言語翻訳:生成能力と大規模なパラメータサイズを考慮すると、このモデルはニュアンスのある文脈に即した正確な翻訳が重要な言語翻訳タスクで優れたパフォーマンスを発揮するかもしれません。 研究開発:研究者や開発者は、さまざまな自然言語処理プロジェクトでのさらなる実験や微調整のためにMistral-7B-v0.1をベースモデルとして活用することができます。 このLLMにはこちらでアクセスできます。 Starling-LM-11B-alpha この大規模言語モデル(LLM)は、110億のパラメータを持ち、NurtureAIから生まれました。このモデルは、その基盤としてOpenChat 3.5モデルを利用し、AIのフィードバックからの強化学習(RLAIF)によるfine-tuningを経ています。このアプローチでは、ヒトによってラベル付けされたランキングのデータセットを利用してトレーニングプロセスを誘導します。 ユースケースとアプリケーション Starling-LM-11B-alphaは、マシンとの対話方法を革新する潜在的な大規模言語モデルであり、オープンソースの性質、優れたパフォーマンス、多様な機能を備えており、研究者、開発者、クリエイティブプロフェッショナルにとって貴重なツールです。…

中国からのこのAI論文では、「モンキー」という新しい人工知能のアプローチが紹介されていますこれは、大規模なマルチモーダルモデルで入力の解像度と文脈関連性を向上させるための方法です

大規模なマルチモーダルモデルは、テキストや画像を含むさまざまなデータを処理し分析する能力があるため、ますます人気が高まっています。学界では、画像のラベリング、ビジュアルな質問への回答など、さまざまなマルチモーダルな活動でその知識が認識されています。LLaVA、MiniGPT4、mPLUG-Owl、Qwen-VLなど、最先端のモデルは、この分野での迅速な進歩の例です。ただし、特に複雑なシナリオの取り扱い時には、さまざまな画像解像度の幅広さや、トレーニングデータの品質の必要性など、いくつかの障害があります。画像エンコーダは改善され、大規模なデータセットが使用されて入力解像度を増やすことで、これらの困難を克服するための取り組みがなされています。 さらに、LLaVAは、マルチモーダルな状況での指示調整を革新的に拡張することで、マルチモーダルな指示に従うデータを統合しています。しかし、これらの手法は頻繁に画像の入力サイズを持続可能に管理し、かつ大規模なトレーニングコストに対処するための支援が必要です。データセットが大きくなるにつれて、画像とテキストの関連性の微妙なニュアンスを理解するために、より複雑な画像の説明が必要とされる状況が増えてきます。これは、COYOやLAIONなどのデータセットで見られる簡潔な一文のキャプションで満たされる必要がある条件です。これらの制約により、華中科技大学と金山研究所の研究者らは、Monkeyと呼ばれるLMMパラダイムのコンテキストで入力解像度を高めるためのリソース効率の良い技術を提案しています。既存のLMMを活用することで、時間のかかる事前トレーニングプロセスを回避することができるため、大規模なオープンソースの作業が豊富に存在していることに感謝します。 研究チームは、高解像度の画像をより管理しやすく、局所的な部分に分割するためのスライディングウィンドウアプローチを使用するシンプルかつ効率的なモジュールを提案しています。静的なビジュアルエンコーダ、複数のLoRA修正、および訓練可能なビジュアルリサンプラは、各パッチを個別にエンコードします。その後、言語デコーダには、これらのパッチのエンコーディングとグローバルな画像のエンコーディングが与えられ、より良い画像理解が行われます。また、BLIP2、PPOCR、GRIT、SAM、ChatGPT OpenAIなどの多くのジェネレータからのマルチレベルの手がかりを組み合わせた技術も開発し、豊富で高品質なキャプションデータを提供しています。 まず、彼らのモデルの画像キャプショニングの割り当ては、画像のさまざまなアクセサリやバックドロップの赤い旗など、間違いや抜けがなくほぼすべての側面を正確に説明することができます。キャプションに含まれる茶色のバッグは、写真をよく見ないとすぐには明らかでないかもしれませんが、モデルの説明では強調されています。この小さなヒントにより、モデルは確実に検証することができなくても理に適った結論を導くことができます。これにより、モデルは小さなアイテムにも注意を払い、論理的かつ正確な説明を提供する能力を示しています。ビジュアルの詳細な説明の提供だけでなく、モデルはさまざまな言語とそれらに対応する信号を区別することもできます。 この情報を使用することで、Monkeyによる写真の効用を合理的に予測することができます。写真の水印である “life quotes Tumblr” に “e” が欠けていても、モデルはそれに関する質問に答えることができます。これは、トレーニング後により高い解像度の写真の小さなテキストを読む能力を示しています。さらに、モデルが “October 6, 1966” という日付に関する質問に正しく応答することで、チャートからデータを読み取り、濃密なテキスト素材の中から適切な応答を特定する能力も示されています。この現象は、モデルが特定のテキストとそれに対応する目標の整合性を正確に表現できる能力を示し、濃密であいまいなテキストでもクエリに正確に応答する能力と、目的と全体的な知識の関連性を強調しています。 Monkeyの利点は次のようにまとめられます: 1. コンテキスト内の関連性。研究チームは、説明の生成においてさまざまなターゲット間の関係を理解し、テキスト説明を作成する際に共通の知識をより効果的に探索するためのマルチレベル戦略を提案することで、モデルの能力を向上させています。これにより、より深い洞察と詳細な結果が生み出されます。 2. 事前トレーニングなしで、1344 x 896までの解像度をサポート。LMMに通常使用される448 x…

「マイクロソフトのAzure AIモデルカタログが革新的な人工知能モデルで拡大」

“`html <img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/11/ignite_models_2.gif”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/11/ignite_models_2-150×150.gif”/><p>Microsoftは、Azure AIモデルカタログの大規模な拡張を発表しました。これには多様で革新的な技術が統合されることで、人工知能の分野で大きな進歩が実現されることになります。</p><h3>AIカタログへの多様な追加</h3><p>Azure AIモデルカタログには、新たに40のモデルが追加され、テキストから画像や画像エンベッディングの機能といった4つの新たなモダリティが導入されました。主な追加は以下のとおりです:</p><ol><li><strong>Stable Diffusion Models</strong>:Stability AIおよびCompVisによって開発されたこれらのモデルは、テキストから画像への変換やインペイントのタスクで優れたパフォーマンスを発揮し、クリエイティブなコンテンツ生成において堅牢かつ一貫した出力を提供します。</li><li><strong>Falcon Models from TII</strong>:7および40兆のパラメータを備えたFalconモデルは、推論処理に最適化されており、多くのオープンソースモデルを凌駕します。</li><li><strong>Code Llama from Meta</strong>:7から34兆のパラメータを備えた、コーディングタスクを支援するための生成テキストモデルの範囲です。</li><li><strong>NVIDIA Nemotron</strong>:NVIDIAが提供する80億のパラメータを持つこのモデルは、チャットやQ&Aなどさまざまな機能を備えており、NVIDIA NeMo Frameworkと互換性があります。</li><li><strong>SAM(Segment Anything Model)from Meta</strong>:単純な入力プロンプトから高品質なオブジェクトマスクを作成することができる画像セグメンテーションツールです。</li></ol><h3>モデルのサービス(MaaS)</h3><p>Microsoftは戦略的な動きとして、Models as…

「Amazon SageMaker JumpStartでMistral 7Bを調整して展開する」

今日は、Amazon SageMaker JumpStartを使用してMistral 7Bモデルを微調整する機能を発表できることをお知らせいたしますAmazon SageMaker StudioのUIを使用して、数回のクリックでSageMaker JumpStartでMistralテキスト生成モデルを微調整して展開することができますまたは、SageMaker Python SDKを使用することもできます基盤となるモデルは生成タスクのパフォーマンスが非常に良いです、[…]

ワビとトロント大学の研究者が、オートラベリングのためのオブジェクト軌跡を洗練するための効率的なトランスフォーマベースのAIモデル、LabelFormerを紹介しました

現代の自動運転システムでは、交通参加者を認識するためのオブジェクト検出器を訓練するために、広範な手動注釈付きデータセットが頻繁に使用されています。最近、自動的にセンサーデータのラベルを生成する自動ラベリング手法が注目されています。自動ラベリングは、計算コストが人の注釈付けよりも少なく、生成されるラベルが同等の品質である場合、人の注釈付けの費用の一部で非常に大きなデータセットを提供することができます。そうすることで、より正確な認識モデルをこれらの自動ラベリングされたデータセットを使用してトレーニングすることができます。多くの自動運転プラットフォームで主要なセンサーとして使用されているLiDARは、その後に入力として使用されます。さらに、彼らは自動ラベリングがグラウンドトゥルースラベルのコレクションを使用してトレーニングされることがある監督シナリオに焦点を当てています。  この問題設定はオフボードパーセプションとしても知られており、リアルタイムの制約を持たず、オンボードパーセプションとは異なり、将来の観測にアクセスできます。図1に示すように、最も人気のあるモデルは、2つのステップでオフボードパーセプションの問題を解決しています。人の注釈付け手法から着想を得て、「検出してから追跡する」というフレームワークを使用して、最初にオブジェクトとその粗いバウンディングボックストラジェクトリを取得し、各オブジェクトトラックを独立して洗練します。最初のステージの主な目標は、可能な限り多くのオブジェクトをシーンで追跡することであり、高い再現性を得ることを目指しています。一方、第2ステージは、より高品質のバウンディングボックスを生成するためにトラックの洗練に集中しています。彼らは2番目のステップを「トラジェクトリ洗練」と呼び、これが研究の主題です。  図1:2つのステップで行われる自動ラベリングのパラダイム。最初のステップでは、検出してから追跡する方法を使用して粗いオブジェクトの軌跡を収集します。それぞれの軌跡は第2のステップで個別に洗練されます。 オブジェクトの遮蔽の管理、範囲が広がるにつれての観測の疎薄さ、およびオブジェクトのさまざまなサイズと運動パターンは、この作業を困難にします。これらの問題に対処するためには、完全なオブジェクトの軌跡の時間的な文脈を効率的かつ効果的に活用できるモデルが設計される必要があります。しかし、現在の技術は、サブ最適なスライディングウィンドウの方法で動的なオブジェクトの軌跡を処理するために設計されているため、十分な時間的文脈を計算予算内に収めるために、制約された時間的文脈で各時間ステップで個別にニューラルネットワークを適用して特徴量を抽出するという方法は不十分です。これはより効率的であり、特徴はいくつかの重複するウィンドウで同じフレームから繰り返し取得されるためです。したがって、これらの構造は計算予算内にとどまるために比較的少ない時間的文脈を活用します。  さらに、以前の試みでは、複雑なパイプラインを使用して複数の異なるネットワーク(例:静的オブジェクトと動的オブジェクトの異なる処理への適用)を扱う必要があり、これは構築、デバッグ、およびメンテナンスが困難です。異なるアプローチをとることで、Waabiとトロント大学の研究者は、この論文でLabelFormerを提供し、簡単で効果的かつ経済的なトラジェクトリ洗練技術を提供しています。彼らは完全な時間環境を利用してより正確なバウンディングボックスを生成します。さらに、彼らのソリューションは計算効率において現在のウィンドウベースのアプローチよりも優れており、人の注釈付けに対して自動ラベリングには明確な優位性を提供します。このために、彼らは、初期のバウンディングボックスパラメータと各時間ステップのLiDAR観測を個別にエンコードした後、セルフアテンションブロックを使用したトランスフォーマーベースのアーキテクチャを作成します。  彼らのアプローチは、完全な軌跡を1回のショットで洗練することにより、不必要な演算を排除し、推論中に追跡される各アイテムごとに1回しか使用する必要がありません。また、彼らの設計は以前の方法よりもはるかに簡単であり、静的および動的なオブジェクトを簡単に処理します。彼らのハイウェイと都市のデータセットに対する包括的な実験評価によって、彼らの方法はウィンドウベースの方法よりも速く、より高いパフォーマンスを提供することが示されています。彼らはまた、LabelFormerがより正確な検出を提供するために人間のデータ単独または他のオートラベラーと比較してより大きなデータセットを自動的にラベル付けできることを示しています。

LLMのパフォーマンス比較ーRoberta、Llama 2、およびMistralを使用したLoraによる災害ツイート分析の詳細解説

<ul><li><a href=”https://www.voagi.com/efficient-adaptability-in-large-language-models-through-lowrank-matrix-factorization-lora-qlora-and.html”>LoRAを使用した災害ツイート分析のためのRoberta、Llama 2、Mistralの性能比較</a><ul><li><a href=”https://www.voagi.com/intro-to-social-network-analysis-with-networkx.html”>イントロダクション</a></li><li><a href=”https://www.voagi.com/3-ios-0days-infect-iphone.html”>使用されたハードウェア</a></li><li><a href=”/?s=Goals”>ゴール</a></li><li><a href=”/?s=Dependencies”>依存関係</a></li><li><a href=”https://www.voagi.com/pretrained-foundation-models-the-future-of-molecular-machine-learning-with-graphium-ml-library-and.html”>事前学習済みモデル</a><ul><li><a href=”/?s=RoBERTa”>RoBERTa</a></li><li><a href=”https://www.voagi.com/create-a-rag-pipeline-using-the-llama-index.html”>Llama 2</a></li><li><a href=”https://www.voagi.com/mistral-ai-sets-new-benchmarks-beyond-llama2-in-opensource-space.html”>Mistral 7B</a></li></ul></li><li><a href=”https://www.voagi.com/langchain-101-finetuning-llms-with-peft-lora-and-rl.html”>LoRA</a></li><li><a href=”https://www.voagi.com/llm-evals-setup-and-important-metrics-guide.html”>セットアップ</a></li><li><a href=”https://www.voagi.com/how-to-be-a-data-analyst-in-the-usa.html”>データの準備</a><ul><li><a href=”https://www.voagi.com/how-to-be-a-data-analyst-in-the-usa.html”>データの読み込み</a></li><li><a href=”https://www.voagi.com/apache-kafka-the-mission-critical-data-fabric-for-genai.html”>データ処理</a></li></ul></li><li><a href=”https://www.voagi.com/impact-of-language-models-on-medical-text-analysis.html”>モデル</a><ul><li><a href=”/?s=RoBERTa”>RoBERTa</a><ul><li><a href=”https://www.voagi.com/tips-to-use-prompt-engineering-for-text-classification.html”>分類タスクのためのRoBERTAチェックポイントの読み込み</a></li><li><a href=”https://www.voagi.com/langchain-101-finetuning-llms-with-peft-lora-and-rl.html”>RoBERTa分類器のためのLoRAセットアップ</a></li></ul></li><li><a href=”https://www.voagi.com/mistral-ai-sets-new-benchmarks-beyond-llama2-in-opensource-space.html”>Mistral</a><ul><li><a href=”https://www.voagi.com/mistral-ai-opensources-mistral-7b-a-versatile-language-model.html”>分類モデルのためのチェックポイントの読み込み</a></li><li><a…

「GPTからMistral-7Bへ:AI会話のエキサイティングな進化」

紹介 人工知能の分野では、特に大規模な言語モデルの領域で驚くべき進展が見られています。大規模言語モデルは、人間のようなテキストを生成したり、文書を要約したり、ソフトウェアコードを書いたりすることができます。Mistral-7Bは、英語のテキストとコード生成の能力をサポートする最近の大規模な言語モデルの一つであり、テキスト要約、分類、テキストの補完、コードの補完など、さまざまなタスクに使用することができます。 Mistral-7B-Instructの特徴は、パラメータが少ないにもかかわらず、優れたパフォーマンスを発揮する能力です。ベンチマークの結果によると、このモデルはすべての7Bモデルを凌駕し、さらに13Bチャットモデルとも競争力を持っています。本ブログでは、Mistral 7Bの機能や能力、使用事例、パフォーマンス、モデルの微調整に関する実践的なガイドなどについて探っていきます。 学習目標 大規模言語モデルとMistral 7Bの動作を理解する Mistral 7Bのアーキテクチャとベンチマーク Mistral 7Bの使用事例とパフォーマンス 推論とモデルの微調整のためのコードの詳細な解説 この記事はData Science Blogathonの一環として公開されました。 大規模言語モデルとは何ですか? 大規模言語モデルのアーキテクチャは、トランスフォーマーを使用して構築されており、アテンションメカニズムを使用してデータの長距離依存性を捉えます。複数のトランスフォーマーブロックの層には、マルチヘッドのセルフアテンションやフィードフォワードニューラルネットワークが含まれています。これらのモデルはテキストデータで事前学習され、シーケンス内の次の単語を予測することを学習し、言語のパターンを捉えます。事前学習された重みは特定のタスクで微調整することができます。Mistral 7B LLMのアーキテクチャと、その特徴について詳しく見ていきましょう。 Mistral 7Bのアーキテクチャ Mistral 7Bモデルのトランスフォーマーアーキテクチャは、アテンションメカニズムとキャッシュ戦略を使用して、高いパフォーマンスとメモリ使用量を効率的にバランスさせ、より大きなモデルよりも速度と品質で優れた結果を出します。4096ウィンドウのスライディングウィンドウアテンション(SWA)を使用して、各トークンが直前のトークンの一部に注意を払うことで、より長いシーケンスに対するアテンションを最大化します。 特定の隠れ層は、ウィンドウサイズと層の深さによって、入力層のトークンに対して決定された距離からアクセスできます。モデルは、Flash…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us