Learn more about Search Results コーパス
- You may be interested
- 「AIベースのサイバーセキュリティがビジ...
- 「AIと自動化ソフトウェアがビール業界を...
- AIの革新的なイノベーションが開発者を強...
- 「ゼロからの実験オーケストレーション」
- 「LangChain、Google Maps API、Gradioを...
- このAI研究では、LayoutNUWAというAIモデ...
- AIにおいて大胆であることは、最初から責...
- テキストをベクトルに変換する:TSDAEによ...
- 「この男性は誰でもバイラルにすることが...
- 「データエンジニアリングの役割に疲れま...
- データ・コモンズは、AIを使用して世界の...
- 「大規模な言語モデルを使用した生成型AI...
- 「データの成熟度ピラミッド:レポートか...
- 「Grok Elon MuskのxAIからのAIチャットボ...
- 「Scikit-LearnとMatplotlibによる外れ値...
「埋め込みモデルでコーパス内の意味関係を探索する」
最近、私はいくつかの仲間の学生や学者と話をしてきましたが、彼らは自由形式のテキストの分析に関心を持っていました残念ながら、皆が有意義な洞察を得ることはできませんでした
スカイワーク-13B:3.2Tトークン以上のコーパスから学習された大規模言語モデル(LLM)のファミリーを紹介しますこのコーパスは、英語と中国語のテキストから引用されています
バイリンガルLLMは、言語の多様性が共通の課題となっている相互につながった世界で、ますます重要になっています。彼らは言語の壁を取り払い、異文化理解を促進し、異なる言語を話す人々にとって情報やサービスへのアクセスを向上させる潜在能力を持っています。バイリンガルLLMは、高品質の機械翻訳サービスを提供するために使用することができます。彼らはテキストを一つの言語から別の言語に翻訳し、異なる文化や地域間でのコミュニケーションを円滑にし、言語の壁を取り払うのに役立ちます。 これらのモデルの需要の増加に伴い、商業化のトレンドと透明性の必要性が増しています。多くの組織はモデルのチェックポイントを公に利用可能にし、モデルの重要な情報を公開しないという傾向があります。AIの透明性を回復するために、昆仑科技の研究者たちは英語と中国語のテキストから抽出された32兆トークン以上を使用してトレーニングされた大規模な言語モデルのファミリーを構築しました。それは「Skywork-13B」と呼ばれています。 Skywork-13Bファミリーには、Skywork-13B-BaseとSkywork-13BChatが含まれています。ベースは最新の中国語言語モデリング能力を持つ強力な基礎モデルであり、チャットは会話に最適化された調整済みバージョンです。他の組織とは異なり、彼らはトレーニングプロセスとデータ構成に関する詳細な情報を公開しています。 彼らはまた、トレーニング中にモデルの能力がどのように発展するかを理解するための貴重なリソースである中間チェックポイントも公開しました。彼らはこの開示によって、他の研究者が彼らのユースケースにチェックポイントを活用できると信じています。彼らはまた、トレーニング段階でのドメイン内データの使用レベルを検出する新しい方法も開発しました。 チームはSkywork-13B基盤モデルをSkyPileでトレーニングしました。それらはSkyPile全体ではなく、2つのステージのトレーニングアプローチを追いました。最初のステージでは、SkyPile-Mainでモデルをゼロからトレーニングする主要な事前トレーニングフェーズを構成します。 2番目のステージでは、SkyPile-STEMでSTEM関連のドメイン知識と問題解決能力を最適化するために継続的な事前トレーニングを行います。 モデルのトレーニング中に、チームは多数のバリデーションセットでの言語モデリング損失を調べました。それぞれが中国語と英語のコード、学術論文、ソーシャルメディアの投稿、およびウェブテキストによる異なるデータ分布を反映する独自のバリデーションセットを作成しました。彼らは、このアプローチに従うことが、構成の容易さ、計算の簡素さ、トレーニングの進行に対する高い感度、およびモデルに対する無関心さをもたらすと述べています。 Skywork-13Bモデルは、全体的に最も優れたパフォーマンスを示しています。平均的なPerplexityスコアが最も低い9.42を獲得しました。また、テック、映画、政府、および金融のドメインで最も優れたパフォーマンスを発揮しています。それは同じサイズのモデルのパフォーマンスを超えるだけでなく、InternLM-20BやAquila2-34Bなどのはるかに大きなモデルを大きく上回る優れた成績を収めています。
「The Research Agent 大規模なテキストコーパスに基づいた質問に答える課題への取り組み」
2021年に、大量のテキストコーパスに基づいて質問に答えるという課題に取り組み始めました事前学習済みトランスフォーマーの時代以前、この問題は解決が難しいものでしたそして、私の…
「Azureの「Prompt Flow」を使用して、GPTモードで文書コーパスをクエリする」
そして、「埋め込み」と「ベクトルストア」といった概念を習得し、プログラミングの要件と組み合わせることは、多くの人にとって複雑に思え、実際に力を引き出すことを妨げることは確かです...
「2023年、オープンLLMの年」
2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…
マーク外:AI進捗競争におけるメトリクスゲーミングの落とし穴
「共産主義のネイル工場から資本主義のボット戦まで、この記事では、虚偽の基準や狭視的なハイプサイクルが意味のある進歩を阻害する永遠のリスクに焦点を当てています」
高度なRAGテクニック:イラスト入り概要
この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します
ラストでクロスプラットフォームのTFIDFテキストサマライザーを構築する
NLPツールとユーティリティはPythonエコシステムで大幅に成長し、開発者はすべてのレベルで高品質な言語アプリをスケールさせることができるようになりましたRustはNLPにおいて比較的新しい導入された言語であり、...
ジェンAIに関するトップ10の研究論文
イントロダクション 自然言語理解の常に進化する風景の中で、研究者たちは革新的なアプローチを通じて可能性の限界を em>押し上げることを続けています。本記事では、生成AI(GenAI)に関する画期的な研究論文のコレクションについて探求していきます。これらの研究は、人間の好みとの一致度向上からテキストの説明から3Dコンテンツを生成するという様々な側面にわたって言語モデルを探究しています。これらの研究は学術的な論議に貢献すると同時に、自然言語処理の未来を形作る可能性のある実践的な洞察を提供しています。これらの啓発的な調査を通じて旅を始めましょう。 GenAIに関するトップ10の研究論文 GenAIに関する数百の研究論文の中から、以下は私たちのトップ10の選り抜きです。 1. 生成プリトレーニングによる言語理解の向上 この研究論文は、非教示型のプリトレーニングと教示型のファインチューニングを組み合わせて自然言語理解タスクを強化するための半教師付きアプローチを探求しています。この研究では、Transformerアーキテクチャに基づいたタスクに依存しないモデルを利用しています。これにより、多様な未ラベルのテキストでの生成プリトレーニングとその後の識別的ファインチューニングによって、さまざまな言語理解ベンチマークでのパフォーマンスが大幅に向上することが明らかになりました。 このモデルは、常識的な推論において8.9%、質問応答において5.7%、テキスト言い換えにおいて1.5%といった注目すべき改善を達成しました。この研究は、大規模な未ラベルのコーパスをプリトレーニングに活用し、ファインチューニング中のタスクに意識した入力変換を行うことが、教師なし学習を自然言語処理や他の領域で進めるための貴重な洞察を提供しています。 論文はこちらで入手できます:https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf 2. 人間フィードバックを用いた強化学習:悲観主義を通じたダイナミックな選択の学習 この生成AIに関する研究論文は、オフラインでの人間フィードバックによる強化学習(RLHF)の難しい領域に深入りしています。この研究は、人間の選択に影響を受けたトラジェクトリの集合から、マルコフ決定過程(MDP)における人間の基盤と最適方策を把握することを目指しています。この研究は、経済計量学に根ざしたダイナミックディスクリートチョイス(DDC)モデルに焦点を当て、有界合理性を持った人間の意思決定をモデル化します。 提案されたDynamic-Choice-Pessimistic-Policy-Optimization(DCPPO)メソッドは、次の3つのステージで構成されています。それらは、人間の行動方針と価値関数の推定、人間の報酬関数の再現、および事実に近い最適方策のための悲観的価値反復の呼び出しです。この論文は、動的なディスクリートチョイスモデルによるオフポリシーオフラインRLHFについての理論的な保証を提供しています。分布のシフトや次元のサブオプティマリティの課題への対処についての洞察も提供しています。 論文はこちらで入手できます:https://arxiv.org/abs/2305.18438 3. ニューラル確率言語モデル この研究論文は、次元の呪いによって生じる統計的言語モデリングの課題に取り組み、未見の単語の連続列に対して一般化する難しさに焦点を当てています。提案された解決策は、単語の分散表現を学習することで、各トレーニング文がモデルに対して意味的に隣接する文について情報を提供することを可能にします。単語の表現と単語列の確率関数を同時に学習することで、モデルは一般化性能を向上させることができます。 ニューラルネットワークを用いた実験結果は、最先端のn-gramモデルに比べて大幅な改善を示しており、長い文脈を活用するアプローチの効果を示しています。論文は、学習された分散表現によって次元の課題に対処するモデルの能力を強調しながら、潜在的な将来の改善の可能性についても言及しています。 論文はこちらで入手できます:https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf 4. BERT:言語理解のための深層双方向トランスフォーマーの事前学習 GenAIの研究論文では、未ラベル化されたテキストに対して双方向の事前学習を行うために設計された画期的な言語表現モデルであるBERTが紹介されています。従来のモデルとは異なり、BERTはすべてのレイヤーで左右の文脈に依存し、タスク固有の修正を最小限に抑えながら微調整を可能にします。BERTはさまざまな自然言語処理タスクで最先端の結果を実現し、その簡潔さと実証的なパワーを示しています。 この論文では既存の技術の制約に対処し、言語表現のための双方向の事前学習の重要性を強調しています。BERTのマスクされた言語モデル目的は、深い双方向のTransformer事前学習を促進し、タスク固有のアーキテクチャへの依存を減らし、11のNLPタスクの最先端の技術を前進させています。…
「このAI研究は、グラフ上の大規模言語モデル(LLM)について包括的な概要を共有します」
よく知られたLarge Language Models(LLMs)であるGPTやBERT、PaLM、LLaMAは、自然言語処理(NLP)と自然言語生成(NLG)においていくつかの大変な進歩をもたらしました。これらのモデルは大規模なテキストコーパスで事前学習され、質問応答やコンテンツ生成、要約など、複数のタスクで驚異的なパフォーマンスを発揮しています。 LLMsは平文のテキストを扱うことができることが証明されていますが、テキストデータがグラフ形式の構造情報とリンクされたアプリケーションを扱う必要性がますます高まっています。研究者たちは、LLMsの良好なテキストベースの推論力を活用して、マッチングサブグラフ、最短パス、接続推論などの基本的なグラフの推論タスクにLLMsをどのように適用できるかを研究しています。LLMsの統合に関連付けられているグラフベースのアプリケーションには、純粋なグラフ、テキスト豊かなグラフ、テキスト対応グラフの3つのタイプがあります。これらの機能とGNNとの相互作用に応じて、LLMsをタスク予測器、GNNの特徴エンコーダー、またはGNNとのアライナーとして扱うテクニックがあります。 LLMsはグラフベースのアプリケーションでますます人気が高まっていますが、LLMsとグラフの相互作用を調査する研究は非常に少ないです。最近の研究では、研究チームが大規模な言語モデルとグラフの統合に関連した状況と方法の体系的な概要を提案しています。目的は、テキスト豊かなグラフ、テキスト対応グラフ、純粋なグラフの3つの主要なカテゴリに可能な状況を整理することです。チームは、アライナー、エンコーダー、または予測器としてLLMsを使用する具体的な方法を共有しています。各戦略には利点と欠点があり、リリースされた研究の目的はこれらのさまざまなアプローチを対比することです。 チームは、LLMsをグラフ関連の活動で使用する利点を示すことで、これらの技術の実用的な応用に重点を置いています。チームは、これらの方法の適用と評価を支援するためのベンチマークデータセットとオープンソーススクリプトに関する情報を共有しています。結果は、この急速に発展している分野でのさらなる研究と創造性の必要性を強調して、可能な将来の研究トピックを概説しています。 チームは、彼らの主な貢献を以下のようにまとめています。 チームは、言語モデルがグラフで使用される状況を体系的に分類することで貢献を果たしました。これらのシナリオは、テキスト豊かな、テキスト対応、純粋なグラフの3つのカテゴリに整理されています。この分類法は、さまざまな設定を理解するための枠組みを提供します。 言語モデルは、グラフのアプローチを用いて詳細に分析されました。評価は、さまざまなグラフ状況の代表的なモデルをまとめたもので、最も徹底的なものとなっています。 言語モデルをグラフに関連する研究に関連して、実世界の応用、オープンソースのコードベース、ベンチマークデータセットなど、多くの資料がキュレーションされています。 言語モデルをグラフでのさらなる研究のための6つの可能な方向が提案されており、基本的なアイデアを掘り下げています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.