Learn more about Search Results もっと詳しく

「機械学習アルゴリズムとGAN」

「GANとさまざまな機械学習アルゴリズムについて詳しく学びましょう」(GANとさまざまなきかいがくしゅうアルゴリズムについてくわしくまなびましょう)

空からのパイ:ドローンスタートアップがピザ、薬物、そして興奮をお届けします

ジップラインは、ただの空飛ぶドローンのスタートアップではありません。 このサンフランシスコを拠点とする企業は、2011年の開始以来、7つの国で80万回以上の配送を完了しました。最近では、シアトルのパリャッチピザ、ビタミン・サプリメントの巨大企業であるGNC、およびIntermountain Health、OhioHealth、Michigan Medicineなどの大規模な医療システム向けにもサービスを追加しました。 ジップラインは、NVIDIA JetsonエッジAIおよびロボティクスプラットフォームを使用して、自律的なナビゲーションと精密な着陸ができるドローンを開発しました。これらのドローンは現在までで5500万マイル以上を飛行しています。 この急成長を遂げている企業は最近、43億ドル以上の評価額で3億3000万ドルの資金調達に成功しました。 ジップラインは、技術的なサポートとAIプラットフォームのガイダンスを提供するプログラムであるNVIDIA Inceptionのメンバーです。 ジェットソンパワードフリートでの配送 同社のP1ドローン(プラットフォーム1)は、7年間の稼働を経て実稼働に移行しており、現在はJetson Xavier NXシステムオンモジュールを使用してセンサー入力を処理しています。GPS、航空交通管制の通信、慣性計測ユニットセンサー、および搭載された検出および回避システムによって誘導され、安全性のためにガイダンスの冗長性も持っています。 ジップラインの固定翼ドローンは、55マイル以上を時速70マイルで飛行し、いくつかのジップラインの配送センターから配送を行い、その後戻ることができます。最大4ポンドの貨物を運ぶことができ、自律的に配送場所を飛び越え、パラシュートで目的地に向かってパッケージを降ろすことができます。 P2ドローン(プラットフォーム2)は、固定翼飛行で高速に飛行できるハイブリッドドローンであり、またホバリングも可能です。10マイルの距離で8ポンドの貨物を運び、細かな配置を完了するために、テザーで下げるドロイドを搭載しています。これは、密集した都市環境での使用を想定しています。 P2には2つのJetson Orin NXモジュールが使用されています。1つはドローンの環境を理解するためのセンサーフュージョンシステム用です。もう1つはテザーによって降下するドロイド内にあり、追加の安全性のための冗長性を提供します。 ジップラインのP2ドロイドでは、最小かつ最も素早く、最も安全で最も静かなドローンを使って精密なデリバリーを実現することを目指しています。 ジップラインは世界中で毎秒70回のデリバリーを行っています。 多数の顧客に向けて飛び立つ ジップラインのサービスには顧客が惹かれる利点があります。同社によれば、そのドローンは車両の配送に比べて7倍速い配達時間を実現しています。 「当社の航空機は時速70マイルで飛行しますので、交通渋滞や信号待ちの心配はありません。配送時間は数分です」とマーダールは語ります。「配達には一桁の分数の時間がかかりますので、確かに他の方法よりも速いです。」 ピザ、ビタミン、薬の配送だけでなく、ジップラインはWalmart、レストランチェーンのSweetgreen、Michigan…

「ChatGPTの新たなライバル:Googleのジェミニ」

グーグルは、ChatGPTを上回ると言われるリニューアルされたAIモデルを導入しました詳しく見てみましょう

「Pixel 8 Pro」という初めてのAI搭載スマートフォンは、現在Gemini Nanoで稼働しており、さらにAIのアップデートがPixelポートフォリオにも導入されています」

ニューフィーチャードロップは、Pixelハードウェアへのアップデートをもたらしますさらに、Gemini Nanoは、Pixel 8 Proのデバイス内生成AI機能をパワーアップします

「アナコンダのCEO兼共同創業者、ピーターウォングによるインタビューシリーズ」

ピーター・ワンはAnacondaのCEO兼共同創設者ですAnaconda(以前はContinuum Analyticsとして知られる)を設立する前は、ピーターは15年間にわたり、3Dグラフィックス、地球物理学、大規模データシミュレーションと可視化、金融リスクモデリング、医療画像など、さまざまな分野でソフトウェアの設計と開発に取り組んできましたPyDataコミュニティとカンファレンスの創設者として、 […]

NVIDIAのGPUはAWS上でOmniverse Isaac Simにおいて2倍のシミュレーションの進化を提供し、スマートなロボットの加速を実現します

クラウド上でよりインテリジェントなロボットを開発することが、スピードの倍増をもたらします。 NVIDIA Isaac SimとNVIDIA L40S GPUsがAmazon Web Servicesに導入され、開発者はクラウド上で加速されたロボットアプリケーションを構築および展開することができます。 AI対応ロボット用の拡張可能なシミュレータであるIsaac Simは、NVIDIA Omniverse開発プラットフォーム上に構築され、OpenUSDアプリケーションの構築と接続を可能にします。 AIコンピューティングの強力さとグラフィックスおよびメディアの高速化を組み合わせると、L40S GPUは次世代のデータセンターワークロードのパワーになります。 Ada Lovelaceアーキテクチャに基づいたL40Sは、過去の世代と比較してOmniverseに対して最大3.8倍の性能向上をもたらし、エンジニアリングおよびロボティクスチームの性能を向上させます。 加速による世代間の飛躍により、Isaac Simを使用した幅広いロボットシミュレーションタスクにおいて、L40S GPUはA40 GPUと比較して2倍の高速パフォーマンスを実現します。 L40S GPUは、言語モデルの微調整から画像へのテキスト変換やチャットアプリケーションへのリアルタイム推論など、生成的AIのワークロードでも活用することができます。 NVIDIA L40Sの新しいAmazon Machine…

「Rustベースのベクトルデータベース、Qdrantに深く潜る」

イントロダクション ベクトルデータベースは、非構造化および構造化データの表現を格納および索引化するための主要な場所となっています。これらの表現は、埋め込みモデルによって生成されるベクトル埋め込みです。ベクトルストアは、ディープラーニングモデル、特に大規模な言語モデルを使用したアプリの開発で重要な役割を果たしています。ベクトルストアの領域は常に進化しており、最近導入されたQdrantはその1つで、機能が充実しています。さあ、それについてもっと詳しく見ていきましょう。 学習目標 Qdrantの専門用語に慣れることで、より理解を深める Qdrant Cloudにダイブし、クラスタを作成する ドキュメントの埋め込みを作成し、Qdrantコレクションに保存する方法を学ぶ Qdrantでクエリがどのように機能するかを探る Qdrantのフィルタリングを弄って、その動作を確認する この記事はData Science Blogathonの一環として公開されました。 埋め込みとは何ですか? ベクトル埋め込みは、データを数値形式で表現する手段です。つまり、テキスト、写真、音声、ビデオなどのデータの種類に関係なく、n次元空間または数値ベクトルとして表します。埋め込みを使用すると、関連するデータをグループ化することができます。特定の入力は、特定のモデルを使用してベクトルに変換することができます。Googleによって作成された有名な埋め込みモデルであるWord2Vecは、単語をベクトル(ベクトルはn次元の点です)に変換します。各大規模言語モデルには、LLMの埋め込みを生成する埋め込みモデルがあります。 埋め込みは何に使用されますか? 単語をベクトルに変換する利点の1つは、比較が可能であるということです。数値入力またはベクトル埋め込みとして2つの単語が与えられた場合、コンピュータはそれらを直接比較することはできませんが、それらを比較することができます。類似した埋め込みを持つ単語をグループ化することが可能です。王、女王、王子、王女といった用語は、関連するクラスタに表示されます。 この意味で、埋め込みは、与えられた用語に関連する単語を特定するのに役立ちます。これは、文に使用され、入力された文に関連する文を返すデータが提供される場合に使用されます。これは、チャットボット、文の類似度、異常検知、セマンティックサーチなどの多くのユースケースの基礎となります。私たちが提供するPDFまたはドキュメントに基づいて質問に答えるために開発するチャットボットは、この埋め込みの概念を利用しています。これは、すべての生成的大規模言語モデルが、それらに供給されるクエリに同様に関連付けられたコンテンツを取得するために使用する方法です。 ベクトルデータベースとは何ですか? 先述のように、埋め込みは、通常非構造化データの場合に数字形式で表される、あらゆる種類のデータの表現です。それでは、それらをどこに保存するのでしょうか?伝統的なRDBMS(リレーショナルデータベース管理システム)では、これらのベクトル埋め込みを保存することはできません。これがベクトルストア/ベクトルデータベースの登場する場所です。ベクトルデータベースは、効率的な方法でベクトル埋め込みを保存および取得するために設計されています。埋め込みモデルのサポートや似たようなベクトルを取得するために使用する検索アルゴリズムの種類によって異なる多くのベクトルストアが存在します。 Qdrantとは何ですか? Qdrantは、新しいベクトル類似度検索エンジンおよびベクトルデータベースであり、安全性で知られるRust言語で構築された本番向けのサービスを提供しています。 Qdrantは、メタデータであるペイロードが付加された高次元ポイント(ポイントはベクトル埋め込みのこと)を保存、検索、管理するために設計されたユーザーフレンドリーなAPIを備えています。これらのペイロードは有用な情報となり、検索の精度向上およびユーザーへの洞察を提供します。Chromaなど他のベクトルデータベースに精通している方であれば、ペイロードはメタデータに似ており、ベクトルに関する情報を含んでいます。 Rustで書かれていることにより、Qdrantは高負荷下でも高速で信頼性のあるベクトルストアとなっています。他のデータベースとの違いは、Qdrantが提供するクライアントAPIの数です。現在、QdrantはPython、TypeScript/JavaScript、Rust、およびGoをサポートしています。QdrantはベクトルインデックスにHSNW(階層ナビゲーション小世界グラフ)を使用しており、コサイン、ドット、ユークリッドなどの多くの距離尺度を備えています。また、ボックスから推奨APIも利用できます。 Qdrantの用語を知る…

「オンラインプログラムで第3位のデータサイエンスのマスターをしましょう」

「Bay Path Universityの柔軟な応用データサイエンス修士号で、ビジネス分析を超えよう3月の入学受付中です」

「LoRAを使用してAmazon SageMakerでWhisperモデルを微調整する」

「ウィスパーは、ウェブ上の言語とタスクの幅広いデータを使用してトレーニングされた、自動音声認識(ASR)モデルですしかし、マラーティー語やドラヴィダ語などの資源の少ない言語においては、性能が低下するという制約がありますこの制約は、ファインチューニングによって解消できますしかし、ウィスパーのファインチューニング […]」

アリエル・カッツ、H1のCEO兼共同創設者-イスラエルとガザの支援、GenosAI、トライアルイノベーション、医療分野でのAIの影響、現代医学におけるデータの役割、スタートアップのアドバイス

「H1は医療関係者、研究者、業界パートナーをつなぎ、臨床、科学、研究情報と洞察力を提供し、医療の成果を向上させ、医療業界のイノベーションを推進します私たちは、Ariel Katz氏、H1のCEO兼共同創業者に、AIを活用した医療に関するインタビューシリーズに参加していただき、感謝していますこのインタビューでは、ArielがH1の持続的なサポート活動について議論しています... Ariel Katz氏、H1のCEO兼共同創業者 — イスラエルとガザの支援、GenosAI、臨床試験のイノベーション、AIの医療への影響、現代医療におけるデータの役割、スタートアップへのアドバイス 詳細はこちら »」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us