Learn more about Search Results これ
- You may be interested
- 「2Dマテリアルがハードウェアのために3D...
- DatabricksがMosaicMLとその他の最近のAI...
- 「アメリカでの顔認識技術は、最大の試練...
- 「2023年の最高のAIアバタージェネレータ...
- このAI論文は、「Vary」という新しいアプ...
- 書評:Cogniteの「産業向けジェネラティブ...
- ジェイソン・アーボン:「百万年後、超パ...
- 「セールスとマーケティングのためのトッ...
- オムニバースへ:Reallusionは、2方向のラ...
- 『思考の整理、早くて遅い+AI』
- 「OECDレポート:AIによる高いリスクを持...
- Pythonを使用したデータのスケーリング
- 次回のデータサイエンスの課題への5ステッ...
- 「あなたのデータは(ついに)クラウドに...
- 「量子化とその他 LLMの推論時間を80%削減...
「MongoDBの時系列コレクションとAmazon SageMaker Canvasで洞察力の向上を加速する」
これは、MongoDBのBabu Srinivasanと共同執筆したゲスト投稿です現在の急速に変化するビジネスの風景では、リアルタイムの予測を行う能力の欠如は、正確かつタイムリーな洞察に重要な依存をする産業にとって、重要な課題をもたらしますさまざまな産業におけるリアルタイムの予測の欠如は、意思決定に重要な影響を与える切迫したビジネスの課題を提起します
このAI論文は、「パーシウス」という画期的なフレームワークを紹介していますこれにより、大規模な機械学習やAIモデルのトレーニング時のエネルギー浪費を最大30%削減することが可能です
大きな言語モデル(GPT-3など)は、トレーニングと推論中の計算ニーズにより、相当なエネルギーを必要とします。エネルギー使用量は、モデルのサイズ、タスクの複雑さ、ハードウェアの仕様、および運用時間などの要素によって大きく異なります。 これらのモデルのトレーニングには、高性能なGPUやTPUを使用するなど多くの計算リソースが必要とされ、長期にわたる相当なエネルギー消費を伴います。GPT-3のような大規模な言語モデルのトレーニングには、数日または数週間にわたる複数の家庭の消費電力に相当するエネルギーが使われるとの推定があります。 エネルギー消費の最適化は重要であり、モデルの効率を損なうことなく行われる必要があります。研究者は、大規模な言語モデルのトレーニングにおいてスループットの喪失を伴わない削減可能なエネルギー消費を目指しています。各パイプラインの計算量の問題は、分散実行計画において重要な問題です。ディープニューラルネットワーク(DNN)は、計算量が異なる粗粒度のテンソル操作ですので、すべてのステージをバランス良く調整するのは不可能です。 ミシガン大学とワシントン大学の研究者たちは、トレーニング中に消費されるエネルギーのすべてが直接エンドツーエンドのトレーニングスループットに貢献するわけではなく、トレーニングを遅くすることなく大幅に削減できることを発見しました。彼らはエネルギーの膨張の内的および外的な要因を発見し、Perseusという単一の最適化フレームワークを提案しています。 内的なエネルギーパフォーマンスの喪失は、計算の不均衡性によるものであり、外的なエネルギーパフォーマンスの喪失は、複数のパイプラインが並列で実行され、大量のデータセットでトレーニングをスケールアウトさせるためのものです。遅れているパイプラインよりも早く実行されるパイプラインは速く、全体のトレーニングスループットに影響を与えないエネルギーを無駄に消費します。 Perseusは、通常の運用条件下で内的なエネルギーパフォーマンスの喪失を最小限に抑えるため、イテレーション全体の時間エネルギーを効率的に事前特性化します。さらに、エネルギーを効率的に削減することにより、外的なエネルギーパフォーマンスの喪失を緩和します。非遅れているパイプラインにおいて適切なイテレーションタイミングを見つけることで、パイプライン内の計算を正確に遅くすることができます。 研究者は、ハイブリッド並列処理で大規模なモデルのトレーニングを行い、さまざまな強いスケーリング構成で遅れるパイプラインをシミュレーションしました。エネルギーパフォーマンスの喪失量とPerseusの外的なエネルギー節約を測定しました。他の非遅れるパイプラインは、遅れるパイプラインの計算が完了するまで待つため、外的なエネルギーパフォーマンスの喪失が生じます。各パイプラインイテレーションの開始と終了時にマイクロバッチの数やパイプラインバブルの比率を減らすことで、内的なエネルギーパフォーマンスの喪失を除去し、エネルギーを削減します。 Perseusをトレーニングワークフローに統合することは、AIの開発の将来に強い影響を与える可能性があります。彼らの研究は、LLM(Large Language Models)とGenAIの普及における分散トレーニングの持続可能性を大幅に向上させる可能性があります。
「これらの完全自動の深層学習モデルは、スマートフォンの統合を使用して、猫の苦痛指標スケール(FGS)を使用した痛み予測に使用できます」
人工知能(AI)の能力は、医療、金融、教育など、あらゆる業界に広がっています。医学や獣医学の分野では、適切な治療を施すために、痛みの特定は重要な第一歩です。特に痛みを伝えることができない人々では、代替の診断技術の使用が求められます。 従来の方法には、痛み評価システムの使用や行動反応の追跡などがありますが、主観性、妥当性の欠如、観察者のスキルとトレーニングへの依存、そして痛みの複雑な感情と動機的な側面を十分に表現できないなど、いくつかの欠点があります。特にAIを活用することで、これらの問題に取り組むことができます。 いくつかの動物種には、苦痛の重要な指標となる表情があります。苦痛のある人とそうでない人を区別するために表情の尺度が確立されています。これらは特定の顔のアクションユニット(AU)にスコアを割り当てることで機能します。しかし、現在のグリマスケールを使用して静止画やリアルタイムの痛みをスコアリングするための技術は、労働集約的で手動のスコアリングに重く依存しているという制約がいくつかあります。また、毛色、品種、年齢、性別に加えて、さまざまな自然発生的な痛みの症候群をカバーし、幅広い動物データセットを考慮した完全に自動化されたモデルの不足が指摘されています。 これらの課題を克服するため、研究チームは最近の研究で「猫の表情指標スケール(FGS)」を提案し、猫の急性疼痛を評価するための信頼性のある手法として提示しました。このスケールを構成するために5つのアクションユニットが使用され、それぞれが存在するか否かに基づいて評価されています。累積FGSスコアは、猫が不快感を経験しており、援助を必要としている可能性を示します。FGSは、使用の容易さと実用性により、急性疼痛評価においてさまざまな文脈で使用できる柔軟な手法です。 FGSスコアと顔の特徴点は、ディープニューラルネットワークと機械学習モデルを利用して予測されました。畳み込みニューラルネットワーク(CNN)が使用され、サイズ、予測時間、スマートフォン技術との統合の可能性、および正規化された二乗平均平方根誤差(NRMSE)に基づく予測パフォーマンスなどの要素に基づいて必要な予測を行うためにトレーニングされました。データ解析を改善するために、35の幾何学的記述子が並列して生成されました。 FGSスコアと顔の特徴点はXGBoostモデルにトレーニングされました。平均二乗誤差(MSE)と精度メトリックを使用して、これらのXGBoostモデルの予測パフォーマンスを評価するために使用されました。この調査で使用されたデータセットには、37の特徴点で煩雑な注釈がされた3447枚の猫の顔写真が含まれています。 研究チームは、評価の結果、ShuffleNetV2が顔の特徴点の予測において最良の選択肢として浮上し、最も成功したCNNモデルは、正規化された二乗平均平方根誤差(NRMSE)が16.76%でした。最も優れたXGBoostモデルは、FGSスコアを95.5%の驚異的な精度と0.0096の最小平均二乗誤差(MSE)で予測しました。これらの測定結果は、猫の痛みの有無を区別するための高い正確性を示しています。猫の疼痛の評価プロセスを簡素化し、改善するためにこの技術的な進展が利用できることを結論として述べられています。
メタAIは、リアルタイムに高品質の再照明可能なガウシアンコーデックアバターを構築するための人工知能手法「Relightable Gaussian Codec Avatars」を紹介しますこれにより、新しい表情を生成するためにアニメーションさせることができるハイフィデリティのヘッドアバターが作成されます
“`html 画期的な進展を遂げたMeta AIの研究者たちは、ダイナミックな3Dヘッドアバターの高精細なリライティングを実現するという長年の課題に取り組みました。従来の方法では、特にリアルタイムの応用において効率性が重要となる場合に、表情の複雑な細部を捉えることができるようになるまでに時間がかかることがよくあります。Meta AIの研究チームは、この課題に対処すべく、「リライト可能ガウシアンコーデックアバター」という方法を発表し、アバターのリアリズムの領域を再定義する用意のある手法を作り出しました。 研究チームが取り組んだ中核的な問題は、ダイナミックな顔のシーケンスにおいて、髪の毛や毛穴などのサブミリメートルの詳細をより明確に捉える必要があるということです。目、肌、髪などの人間の頭部の異質な材料を効率的にモデル化しながら、すべて周波数の反射に対応するというのは困難な課題です。既存の手法の制約は、リアリズムとリアルタイムのパフォーマンスをシームレスに組み合わせる革新的な解決策が必要とされています。 リライト可能なアバターに関する既存のアプローチは、リアルタイムのパフォーマンスと忠実度のトレードオフに悩まされてきました。リアルタイムのアプリケーションにおいて、動的な顔の詳細を捉えることができるメソッドが必要とされてきたのです。Meta AIの研究チームは、この課題に目をつけ、「リライト可能ガウシアンコーデックアバター」を革新的な解決策として導入しました。 Meta AIの手法は、3Dガウシアンに基づくジオメトリモデルを導入し、サブミリメートルの精度まで拡張する精密さを提供しています。これは、ダイナミックな顔のシーケンスを捉えるための大幅な進歩であり、髪の毛や毛穴の微妙なニュアンスを含め、アバターが生命的な詳細を示すことを保証します。この革新的な手法の重要な要素であるリライト可能な外観モデルは、学習可能な輝度伝達に基づいています。 https://arxiv.org/abs/2312.03704 これらのアバターの優れた点は、アバターの構築における包括的なアプローチにあります。3Dガウシアンによってパラメータ化されたジオメトリモデルは、アバターのバックボーンを形成し、ガウシアンスプラッティング技術を使用した効率的なレンダリングを可能にします。学習可能な輝度伝達によって駆動される外観モデルは、拡散球面調和関数と反射球面ガウシアンを組み合わせています。この組み合わせにより、アバターは点光源と連続的な照明によるリアルタイムのリライティングを実現できます。 これらの技術的側面を超えて、この手法は表情、視線、ビュー、照明に対する切り離し可能な制御を紹介しています。アバターは、潜在的な表情コード、視線情報、および目標視野方向を利用してダイナミックにアニメーション化することができます。この制御のレベルは、アバターアニメーションにおける重要な進展であり、繊細でインタラクティブなユーザーエクスペリエンスを提供します。 これらのアバターは、単なる理論的な進展ではありません。その手法によって、ヘッドマウントカメラからのライブビデオによるアニメーションが実証されています。この能力により、リアルタイムのビデオ入力がアバターをシームレスに動かすことで、ダイナミックでインタラクティブなコンテンツを作り出すことができます。 総括すると、Meta AIの「リライト可能ガウシアンコーデックアバター」は、複雑な課題に対処するためのイノベーションの力を示すものです。3Dガウシアンに基づくジオメトリモデルと革新的な学習可能な輝度伝達の外観モデルを組み合わせることで、研究チームは既存の手法の制約を超え、アバターのリアリズムに新たな基準を打ち立てました。 “`
ジェミニと共に、バードはこれまで最大のアップグレードを実現しました
「私たちは、Geminiの先進機能をBardに導入し始めています」
「耳を持つドローン」というタイトルで提案されている最新のテクノロジーが注目されていますこのドローンは、耳のようなセンサーを備えており、音を感知することができますこれにより、ドローンが音声指示を聞き分けることが可能になり、より効果的な操作やアクションが行えるようになります
研究者たちは、カメラと一緒にドローンに追加できるマイクロフォンアレイを開発しましたこれにより、災害の被災者の位置の特定を支援することができます
テンセントAI研究所では、GPT4Videoを紹介していますこれは統合マルチモーダル大規模言語モデルであり、指示に従った理解と安全意識のある生成を目指しています
テンセントAIラボとシドニー大学の研究者たちによって、ビデオの理解と生成シナリオの問題がGPT4Videoで解決されました。この統一されたマルチモデルのフレームワークは、ビデオの理解と生成の能力を持つLLM(言語・ロボットマルチモデル)をサポートしています。 GPT4Videoは、安定した拡散生成モデルに統合された指示に従うアプローチを開発し、効果的かつ安全にビデオの生成シナリオを処理します。 先行研究では、視覚入力とテキスト出力を処理する多モーダル言語モデルが開発されています。例えば、いくつかの研究者は、複数のモダリティ用の共有埋め込み空間の学習に焦点を当てています。そして、マルチモーダル言語モデルが指示に従うことができるようにすることに関心が集まっており、最初のマルチモーダルな指示の調整基準データセットであるMultiInstructが紹介されました。LLMは自然言語処理を革新しました。テキストから画像/ビデオの生成は、さまざまな技術を用いて探究されてきました。LLMの安全性への懸念も、最近の研究で取り組まれています。 GPT4Videoフレームワークは、LLMに高度なビデオの理解と生成能力を与えるために設計された万能で多様なシステムです。現在のMLLM(マルチモーダル言語モデル)の限界に応えるために、GPT4Videoはマルチモーダルな出力を生成する能力において不足しているにもかかわらず、マルチモーダルな入力を処理する能力に優れています。GPT4Videoは、LLMが解釈するだけでなく、豊かなマルチモーダルコンテンツを生成することができるようにします。 GPT4Videoのアーキテクチャは、3つの重要なコンポーネントで構成されています: ビデオ理解モジュールは、ビデオの特徴抽出器とビデオの要約器を使用して、ビデオ情報をLLMの単語埋め込み空間とエンコードし整列させます。 LLM本体は、LLaMAの構造を活用し、元の事前学習済みパラメータを維持しながら、Parameter-Efficient Fine Tuning(PEFT)手法であるLoRAを用いています。 ビデオ生成パートは、データセットに従って緻密に構築された指示によって、LLMにプロンプトを生成するように条件付けます。 GPT4Videoは、ビデオの理解と生成において優れた能力を示し、ビデオの質問回答タスクでValleyを11.8%上回り、テキストからビデオへの生成タスクでNExt-GPTを2.3%上回りました。このモデルは、追加のトレーニングパラメータなしでLLMにビデオ生成の機能を備え、さまざまなモデルと連携してビデオ生成に利用することができます。 結論として、GPT4Videoは、言語とビジョンモデルを高度なビデオの理解と生成機能で拡張する強力なフレームワークです。専門的にビデオのモダリティを扱う一方、将来のアップデートでは画像や音声など、他のモダリティにも拡大する予定です。
上海人工知能研究所とMITの研究チームが、階層的に制御された再帰ニューラルネットワーク(RNN)の開発を発表しましたこれは効率的な長期依存性モデリングにおける新たなフロンティアです
上海人工知能研究所とMIT CSAIの研究者によって開発された階層的ゲート付き再帰ニューラルネットワーク(HGRN)技術は、線型RNNに忘却ゲートを組み込むことで、シーケンスモデリングの向上の課題に取り組んでいます。目的は、上位層が長期依存関係を捉える一方、下位層が短期依存関係に焦点を当てることを可能にし、特に非常に長いシーケンスの処理を効果的に行うことです。 この研究では、並列トレーニングと長期依存性の能力によるトランスフォーマーの優位性をシーケンスモデリングにおいて探求しており、線型RNNを使用した効率的なシーケンスモデリングに対する再興にも注目しています。特に、忘却ゲートの重要性を強調しています。長いシーケンスに対して自己注意モジュールの代わりに線型再帰と長い畳み込みの代替手法を考慮し、長い畳込みの課題を明示しています。RNNの長期依存性モデリングとゲートメカニズムの制約も取り上げられています。 シーケンスモデリングは、自然言語処理、時系列分析、コンピュータビジョン、音声処理など、さまざまな領域で重要です。トランスフォーマーの登場前には、RNNが一般的に使用されていましたが、トレーニングが遅く長期依存関係のモデリングには課題がありました。トランスフォーマーは並列トレーニングに優れていますが、長いシーケンスに対して二次時間の複雑性を持っています。 この研究では、効率的なシーケンスモデリングのためのHGRNを提案しています。これは、トークンとチャネルのミキシングモジュールからなるスタックされたレイヤーで構成されています。線型再帰レイヤー内の忘却ゲートは、上位層での長期依存性のモデリングと下位層での局所依存性を可能にします。トークンミキシングモジュールは、状態空間モデルに着想を得た出力ゲートと射影を組み込んでいます。ゲートメカニズムと動的減衰率は勾配消失の問題に対処します。言語モデリング、画像分類、長距離ベンチマークの評価により、HGRNの効率と効果を示しています。 提案されたHGRNモデルは、言語モデリング、画像分類、長距離領域ベンチマークで優れた性能を発揮します。バニラトランスフォーマー、MLPベース、RNNベースの手法よりも優れた性能を示し、オリジナルトランスフォーマーと同等の性能を言語タスクで発揮します。Commonsense ReasoningやSuper GLUEなどのタスクでは、より少ないトークンを使用してトランスフォーマーベースのモデルと同等の性能を発揮します。HGRNはLong Range Arenaベンチマークで長期依存関係の扱いにおいて競争力のある結果を達成します。ImageNet-1K画像分類では、HGRNはTNNやバニラトランスフォーマーなどの従来の手法を上回ります。 結論として、HGRNモデルは言語モデリング、画像分類、長距離ベンチマークなど、さまざまな課題やモダリティで高い効果を発揮しています。忘却ゲートとその値の下限の使用により、長期依存関係の効率的なモデリングが可能です。HGRNは、バニラトランスフォーマー、MLPベース、RNNベースの手法のバリエーションに比べて言語タスクで優れた性能を発揮し、ImageNet-1K画像分類ではTNNやバニラトランスフォーマーなどの手法と比較して優れた性能を示しています。 HGRNモデルの将来の展望には、様々な領域や課題での広範な探索が含まれ、その汎用性と効果を評価します。さまざまなハイパーパラメータとアーキテクチャの変化の影響を調査することで、モデルの設計を最適化します。追加のベンチマークデータセットの評価と最先端のモデルとの比較により、性能をさらに検証します。注意力や他のゲートメカニズムの組み込みなど、長期依存性のキャプチャを向上させるための改善点を探求します。さらに長いシーケンスの拡張性とパラレルスキャン実装の利点も調査します。解釈可能性と説明可能性のさらなる分析により、意思決定の洞察を得て透明性を向上させることを目指します。
Google AIとテルアビブ大学の研究者は、テキストから画像への拡散モデルと専門のレンズジオメトリを組み合わせた人工知能フレームワークを提案しています画像のレンダリングに関して、これは画期的なものです
画像生成の最近の進歩は、大規模な拡散モデルを利用した、テキストと画像データのペアで訓練されたもので、多様な条件付け手法を取り入れ、ビジュアル制御を向上させています。これらの手法は、明示的なモデルの条件付けから、新しいモダリティのための事前学習済みアーキテクチャの変更まで様々です。深度などの抽出された画像特徴を使用してテキストによる条件付けモデルを微調整することで、画像の再構築が可能になります。以前の研究者は、オリジナルの解像度情報を利用したGANsフレームワークを紹介し、多解像度および形状一貫性のある画像生成を実現しました。 Google Researchとテルアビブ大学の研究者は、AIフレームワーク(AnyLens)を提案し、専用のレンズジオメトリとテキストから画像への拡散モデルを統合して画像レンダリングを実現しています。この統合により、レンダリングジオメトリの正確な制御が可能になり、単一の拡散モデルを使用して魚眼、パノラマビュー、および球面テクスチャなどの様々な視覚効果の生成が容易になります。 本研究では、テキストから画像への拡散モデルに多様な光学制御を組み込むための新しい手法を提案しています。この手法により、モデルはローカルなレンズジオメトリに基づいて条件付けされ、リアルな画像生成のための複雑な光学効果の再現能力が向上します。従来のキャンバス変換を超えて、手法はピクセルごとの座標条件付けを介してほぼ任意のグリッド変形を可能にします。このイノベーションは、パノラマシーンの生成や球体のテクスチャリングを含むさまざまなアプリケーションをサポートします。計量テンソル条件付けを用いた幾何学的に感知的な画像生成フレームワークを導入して、画像生成の制御と操作の可能性を拡大します。 本研究は、ピクセルごとの座標条件付けを通じてテキストから画像への拡散モデルに特定のレンズジオメトリを統合するフレームワークを紹介しています。この手法は、ランダムなワーピングフィールドを使用して画像を変形させたデータによって事前学習された潜在的な拡散モデルを微調整します。自己注意層のトークン再重み付けが採用されています。この方法は曲率特性の操作を可能にし、魚眼やパノラマビューなどのさまざまな効果をもたらします。画像生成において固定された解像度を超え、計量テンソル条件付けを組み込むことで制御が向上します。このフレームワークは、大規模な画像生成や拡散モデルにおける自己注意スケールの調整といった課題に取り組むことで、画像操作の可能性を拡張します。 このフレームワークは、特定のレンズジオメトリを持つテキストから画像への拡散モデルを正確に統合し、魚眼、パノラマビュー、球面テクスチャなどのさまざまな視覚効果を単一のモデルで実現します。曲率特性とレンダリングジオメトリに対する正確な制御が提供され、リアルで微妙な画像生成が実現されます。大規模なテキスト注釈データセットとピクセルごとのワーピングフィールドで訓練されたこの手法は、目標のジオメトリに密接に合わせ、細やかな歪みのない結果の任意の変形画像を生成することを容易にします。また、球面パノラマをリアルな比率と最小限のアーティファクトで作成することも可能になります。 まとめとして、画像レンダリングにおけるさまざまなレンズジオメトリの組み込みを提供する新しく導入されたフレームワークは、曲率特性と視覚効果に対する制御を向上させます。ピクセルごとの座標および計量条件付けを通じて、レンダリングジオメトリの操作を容易にし、高度なリアルな画像およびジオメトリ操作を可能にします。このフレームワークは、高品質な画像を作成するための貴重なツールとして、イメージ合成における創造性と制御を促進します。 今後の研究では、多様な画像生成を向上させるために、高度な条件付け技術を探求することにより、手法の制限を克服することが求められます。研究者たちは、専門的なレンズによって異なるシーンを捉える結果に近い結果を得るために手法を拡張することを提案しています。より高度な条件付け技術の使用についても言及し、画像生成の向上と機能の拡張を期待しています。
「アリババは、量子コンピューティングよりもこれを優先します」
中国のテック巨人であるアリババは最近、量子コンピューティング部門を廃止するという戦略的な重点の大幅な転換を発表しました。この決定は、計画されていたクラウド事業の中止に続くもので、新興技術に再配分することを目指しています。具体的には、生成型人工知能(AI)に特化しています。 量子コンピューティング部門の閉鎖 アリババの量子コンピューティング部門の閉鎖は、研究開発戦略の大きな転換を示しています。約30人の従業員が影響を受ける見込みですが、アリババはこれらの個人をサポートすることに全力を注ぎ、浙江大学での潜在的な機会を示唆しています。この動きは、戦略的な転換の中でも才能の育成にアリババが注力していることを強調しています。 要因 量子コンピューティング部門の閉鎖の具体的な理由は明らかにされていませんが、専門家は中国との半導体取引を禁止する米国の禁輸措置との関連性を推測しています。この禁輸措置により、中国の量子コンピューティング計画は混乱し、他の地域がセクターへの投資を強化しています。アリババは2015年以来、量子コンピューティング研究に1,500万ドル近くを投資しています。 アリババの内部改革 量子コンピューティング部門の閉鎖は、アリババが2022年に行っている幅広い組織改革の一環です。同社は以前、事業を6つの独立したオペレーティングユニットに分割することを発表し、大幅な人員削減につながりました。クラウド事業の中止などにより株価が下落し、リーダーシップの再編が行われました。市場の反応は、戦略的な転換における明確なコミュニケーションと透明性の重要性を強調しました。 生成型人工知能の台頭 内部の課題と組織再編にも関わらず、生成型人工知能はアリババの重点的な焦点となっています。同社の取り組みは、中国当局の法的枠組みに合わせた企業とAI研究者向けのカスタマイズが可能なオープンソースのAIモデルの導入により裏付けられています。生成型人工知能への転換は、アリババが市場のダイナミクスの進化に適応し、テクノロジーの分野でリーダーシップを維持する決意を示しています。 また読む: アリババ、メタに立ち向かうためにAIモデルをオープンソース化して開発者をサポートする計画 私たちの意見 アリババの戦略的な動きは、テック業界のダイナミックな性質を浮き彫りにします。量子コンピューティング部門の閉鎖と生成型人工知能への重点は、新興技術への取り組みを示しています。量子コンピューティングのグローバルな競争の増加により、アリババのリソースの再配分は同社が先駆的な立場を維持することを確認しています。課題の上手な対処は、AIとテクノロジーイノベーションの未来を形作る重要なプレーヤーとしてのアリババを位置付けています。生成型人工知能への重点を置く決定は、同社の先見の明を示しており、イノベーションと適応性を強調しています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.