Learn more about Search Results がん

スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています

ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプロトコルは、正確なリガンド結合ポーズを生成するために事前情報が必要であり、スコアリング関数の正確さが制限されています。GLOWとIVESという2つの新しいプロトコルは、スタンフォード大学の研究者によって開発され、この課題に対応し、ポーズのサンプリング効果を向上させることを示しています。AlphaFoldで生成されたタンパク質構造を含むさまざまなタンパク質構造でのベンチマークテストにより、これらの手法の妥当性が確認されています。 分子ドッキングにおけるディープラーニングは、しばしば剛体タンパク質ドッキングデータセットに依存しており、タンパク質の柔軟性を無視しています。一方、柔軟ドッキングはタンパク質の柔軟性を考慮していますが、精度が低い傾向があります。GLOWとIVESは、これらの制限に対応する高度なサンプリングプロトコルであり、特に動的結合ポケットでベースラインメソッドを常に上回っています。これは、タンパク質リガンドドッキングにおけるリガンドポーズのサンプリングを改善するために重要であり、ディープラーニングベースのスコアリング関数の向上に重要です。 分子ドッキングは、薬物探索においてタンパク質結合サイトへのリガンド配置を予測します。従来の方法は正確なリガンドポーズの生成に課題を抱えています。ディープラーニングは正確性を向上させることができますが、効果的なポーズのサンプリングに依存しています。GLOWとIVESは、チャレンジングなシナリオに対してサンプルを改善し、正確性を向上させるための進んだサンプリングプロトコルです。AlphaFoldで生成された未リガンド化または予測されたタンパク質構造に適用可能であり、キュレーションされたデータセットとオープンソースのPythonコードも提供しています。 GLOWとIVESは、分子ドッキングのための2つのポーズサンプリングプロトコルです。GLOWはソフト化された分散力ポテンシャルを利用してリガンドポーズを生成し、IVESは複数のタンパク質構造を組み込むことで正確性を向上させます。ベースラインメソッドとのパフォーマンス比較により、GLOWとIVESの優位性が示されています。クロスドッキングケースにおける正しいポーズの割合を測定するテストセットの評価は、IVESの効率において重要なシードポーズの品質を示しています。 GLOWとIVESは、リガンドポーズのサンプリングにおいてベースラインメソッドを上回る正確性を持ち、チャレンジングなシナリオやAlphaFoldベンチマークにおいて顕著なタンパク質の構造変化にも優れています。テストセットの評価により、正しいポーズのサンプリング確率の優越性が確認されています。IVESは複数のタンパク質構造を生成することで、タンパク質構造の幾何学的なディープラーニングにおいて、より少ない構造でSchrodinger IFD-MDと同様のパフォーマンスを達成します。GLOWとIVESによって生成された5,000のタンパク質リガンドペアのリガンドポーズデータセットは、ディープラーニングベースのスコアリング関数の開発と評価において貴重なリソースとなります。 https://arxiv.org/abs/2312.00191 結論として、GLOWとIVESは、基本的な技術よりも効果的な2つのポーズサンプリング方法であり、特に困難なシナリオとAlphaFoldベンチマークにおいて優れた性能を発揮しています。IVESでは複数のタンパク質構造が生成されるため、幾何学的ディープラーニングに非常に有利です。また、GLOWとIVESが提供する5,000のタンパク質リガンドペアのリガンドポーズを含むデータセットは、分子ドッキングのディープラーニングベースのスコアリング関数に取り組んでいる研究者にとって貴重な資源です。

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を抱えています。肝細胞・胆管細胞癌(cHCC-CCA)の出現により、HCCとICCAの特徴を表す特徴を持ち、診断上の複雑さと臨床管理のジレンマが生じています。この稀な病態が正確な治療戦略の派生を複雑化させ、患者の予後に寄与しています。このジレンマに対処するため、本研究では人工知能(AI)の適用により、cHCC-CCA腫瘍を純粋なHCCまたはICCAとして再分類し、改善された予後予測と分子的な洞察を提供することを目指しています。 cHCC-CCAは、肝癌の稀な変異型であり、肝細胞と胆管細胞の形態の組み合わせにより病理学者を困惑させます。複雑なブレンドは診断を難しくし、臨床管理に曖昧さをもたらします。さらに、共識ガイドラインの欠如が治療の決定を複雑化させます。この複雑性は、HCCとICCAの境界が曖昧であり、cHCC-CCAがこれらの実体に類似した遺伝子プロファイルを示すことから、その分子的なアイデンティティについての論争を引き起こします。本研究は、病理学画像解析の強力なツールであるAIを活用し、cHCC-CCA腫瘍をHCCまたはICCAとして識別および再分類することで、臨床的な予後予測および分子的な遺伝子パターンに対する解釈を明確にすることを目指しています。 国際的な研究者チームによるこの研究では、セルフスーパーバイズドフィーチャーエクストラクタと注意機構ベースの集約モデルを組み合わせたAIパイプラインを使用しました。このAIフレームワークは、純粋なHCCとICCAを識別し、発見コホート内で有望な結果を示すことを目指しました。モデルは、クロスバリデーションされた受信者操作特性曲線下の面積(AUROC)が0.99である堅牢な分離能力を示しました。独立したTCGAコホートでの後続の検証では、モデルの有効性が補強され、AUROCが0.94になり、高い汎化能力が示されました。特筆すべきは、AIモデルがICCに似た表現型に近い特徴に強い注目を払っていることであり、微細な組織学的ニュアンスを識別する能力を示しています。 AIモデルの純粋なHCCとICCAの区別能力は、その臨床および分子的な意義の更なる探索を促します。この分割によって、cHCC-CCAと診断された患者に対する治療の効果のギャップを埋めるための正確な予後予測および治療戦略のガイドが可能となります。さらに、ICCに似た特徴への注目は、モデルが異なる組織構造を捉える能力を示しており、cHCC-CCAと既知の肝癌タイプとの病理学的な関連性と一致しています。これらの研究結果は、AIがcHCC-CCAのより正確な診断と予後マーカーの指南において潜在力を持っていることを強調しています。 論文の主なポイント: 診断の潜在能力:AIは、cHCC-CCAをHCCまたはICCAの明確なカテゴリに再分類することで、診断の突破口を提供する可能性を示しています。 臨床的な意義:AIによる分類は、cHCC-CCA患者の個別化された治療戦略と予後予測において有望な成果をもたらします。 分子的な洞察:モデルがICCに似た特徴に注目することは、微細な組織学的構造を捉える能力を示しており、cHCC-CCAと既知の肝癌タイプの間の分子的な類似性に光を当てています。 “`

(きんむかんりをかくめいかするみっつのほうほう、じぇねれーてぃぶAI)

「生成AIは企業界を揺るがす方法でヘッドラインを飾っていますが、デスクを持たない労働者を雇用するビジネスも、労働力管理(WFM)プロセスの一部としてその技術の利点を受けることができます最近のマッキンゼー&カンパニーの報告によれば、生成AIは最大で消費する退屈な職場のタスクを自動化する可能性があります」

「素晴らしいAIアプリケーションのクイックでエレガントなデモを作成する」

このブログシリーズの前のパートでは、YouTubeのビデオURLを入力として受け取り、そのビデオを書き起こし、内容を簡潔かつ一貫性のある形式にまとめるMLアプリケーションの構築方法を示しました

「ML技術はがん治療率をより正確に予測することができる」

「テキサス大学アーリントン校(UTA)の研究者が開発した機械学習モデルは、がんの治癒率をより正確に予測することができます」

AIパワードテックカンパニーが、食品小売業者に供給チェーン管理での新たなスタートを支援します

低く垂れ下がっている果物について話しましょう。Afreshは、食品ロスを減らすために供給チェーンを効率化するAIスタートアップです。 NVIDIAのAI Podcastの最新エピソードで、ホストのノア・クラヴィッツが同社の共同創設者で社長のネイサン・フェナーとその使命、提供内容、食品ロス削減の大きな課題について話しました。 多くのスーパーマーケットや小売業者を対象としたサプライチェーンと在庫管理の提供は古くなっています。フェナーと彼のチームは、そのビジネスの不壊性の側面向けに作られたソリューションが、新鮮な側面ではうまく機能しなかったことに気づきました。この問題により、巨大な食品ロスと数十億ドルの損失が生じています。 The AI PodcastAIを活用したテック企業がスーパーマーケットのサプライチェーン管理を刷新 チームはまず、店舗の補充課題を解決するために、適切な量の新鮮な農産物を注文するためのプラットフォームを開発しました。これにより、コストを最適化しながら需要に応えることができます。 彼らは、非壊性商品が生成するデータよりも乱雑である新鮮な農産物が生成するデータを効果的に使用するための機械学習とAIモデルを作成しました。鮮度の低下時間、需要の変動、バーコードの不足によるスキャンエラーなどの要因により、セルフチェックアウトレジスターでの誤ったスキャンが生じます。 その結果、物流プロセスの各ノードで情報を提供し、食品ロスを減らすために意思決定を支援する、完全に統合された、機械学習ベースのプラットフォームが生まれました。 会社はまた、最近、在庫管理ソフトウェアを発売し、スーパーマーケットが時間を節約し、データの正確性を高めるために賢明に在庫を追跡できるようにしました。その情報は、プラットフォームの注文ソリューションに再入力され、在庫データの正確性がさらに向上します。 これはすべて、Afreshの大きなミッションである気候変動への取り組みの一環です。 「気候変動を緩和するためにできる最も効果的なことは、食品ロスを減らすことです。」フェナー氏は言います。「私がビジネスに参入する一つの鍵になったことが、常に気候変動の分野で働くことへの興味です。多くのチームメンバーにとって、これは非常にやる気を起こさせる要素であり、ミッションの重要な部分です。」 AI Podcastを購読する:Amazon Musicでご利用いただけます AI PodcastはAmazon Musicを通じてご利用いただけます。 さらに、AI Podcastは<itunes、Google Podcasts、Google Play、Castbox、DoggCatcher、Overcast、PlayerFM、Pocket Casts、Podbay、PodBean、PodCruncher、PodKicker、Soundcloud、Spotify、StitcherおよびTuneInでも利用できます。</itunes…

ミシガン大学の研究者は、AIの心理理論において新領域を開拓し、分類法と厳密な評価プロトコルを明らかにしました

ミシガン大学の研究者チームは、大規模言語モデル(LLM)のマインド理論(ToM)能力を評価するための新しい基準と評価プロトコルの開発を提唱しています。この研究では、機械のToMを7つの心的状態のカテゴリに分類する包括的かつ状況依存的な評価手法を提案しています。この研究は、LLMにおける心的状態の総合的な評価の必要性を強調し、それらを物理的および社会的な文脈の中でエージェントとして扱います。 この研究は、LLMにおける確固たるToMの不足と、改善された基準と評価方法の必要性について言及しています。既存の基準の不備を指摘し、LLMをさまざまな文脈でエージェントとして扱う包括的な評価手法を提案しています。機械のToMに関する現在の議論に焦点を当て、その限界とより確かな評価方法の必要性を強調しています。この研究は、ToMをLLMと統合し、評価の環境を改善するための将来の研究に指針を示すことを目指しています。 ToMは人間の認知と社会的推論に不可欠であり、AIにおいて社会的な相互作用を可能にするための重要性が問われています。Chat-GPTやGPT-4などのLLMが機械のToMを持っているかどうかを問い、複雑な社会的および信念推論のタスクにおけるその限界を強調しています。既存の評価プロトコルを見直し、包括的な調査が必要となります。実世界の文脈においてLLMをエージェントとして扱う機械のToMのタクソノミーと状況依存的な評価手法を提唱しています。 この研究では、機械のToMのためのタクソノミーを提案し、LLMのための状況依存的な評価手法を提唱しています。既存の基準を見直し、知覚的な視点の取り組みについての文献調査を行っています。グリッドワールドにおけるパイロットスタディをコンセプトの証明として紹介しています。研究者たちは、ショートカットやデータの漏洩を避けるために注意深いベンチマークの設計の重要性を強調し、現在のベンチマークの制約を限られたデータセットへのアクセスの制限として指摘しています。 この手法は、7つの心的状態のカテゴリを持つ機械のToMのためのタクソノミーを提案しています。ショートカットやデータの漏洩を防ぐために、LLMのための包括的かつ状況依存的な評価手法を提唱しています。コンセプトの証明として、グリッドワールドでのパイロットスタディを行っています。現在のToMのベンチマークの制約を強調し、高品質な注釈とプライベートの評価セットを備えた新しいスケーラブルな基準の開発の必要性を強調しています。公正な評価の実施と、より包括的な基準の計画も推奨しています。 まとめると、この研究では、LLMにおける機械のToMを評価するための新しいベンチマークの必要性が強調されます。実世界の文脈でLLMをエージェントとして考える包括的かつ状況依存的な評価手法が提唱され、ショートカットやデータの漏洩を防ぐためのベンチマークの慎重なキュレーションの重要性も強調されます。この研究では、高品質な注釈とプライベートの評価セットを備えたより大規模なベンチマークの開発と、将来のシステマティックなベンチマークの開発の計画も明らかにされています。 将来の研究の課題として、未開拓の側面に対応し、ショートカットを断たせ、品質の高い注釈とスケーラビリティを確保する新しい機械のToMのベンチマークが必要です。公正な評価に重点を置きながら、プロンプトを文書化し、モデルがさまざまな文脈でエージェントとして扱われる状況依存的なToMの評価方法を提案します。複雑な評価プロトコルを状況依存的なセットアップで実装することを推奨します。パイロットスタディの制限を認識しながら、将来的には体系的で大規模なベンチマークを実施する計画も立てています。

マルチモーダルデータ統合:人工知能ががん治療を革命へ導く

最近、私はこの記事(リンク)を読みましたそれは癌のための人工知能(AI)との多模式データ統合についてのものでした扱われているトピックが非常に興味深かったですなぜなら、新たな可能性があるからです...

AIを通じて、AskEllyn Bridgesは乳がん患者のサポートギャップを埋める

テクノロジーにますます依存する世界において、医療の領域は革新と思いやりの前例のない融合を目の当たりにしていますAskEllynという画期的な対話型AIツールが登場しましたAskEllynは、乳がんに影響を受ける人々の多面的なニーズに特化して設計されたものです数多くのテクノロジーソリューションが存在していますが、AskEllynは情報提供にとどまらず、独自の特徴を持っています

「Google Quantum AIは、薬学、化学、および原子力エネルギーに関連する量子計算の応用を探るために3つのケーススタディを紹介します」(Google Quantum AIが、やくがく、かがく、およびげんしりょくエネルギーにかんれんするりょうしけいさんのおうようをさぐるためにみっつのけーすすたでぃをしょうかいします)

さまざまな産業は、量子コンピューティングの変革的な可能性を賞賛していますが、有限サイズの問題に対する応用の実用性は疑問の残るところです。Google Quantum AIの共同研究は、量子コンピュータが古典コンピュータを上回る問題を特定し、実用的な量子アルゴリズムを設計することを目指しています。最近の取り組みには以下のものがあります: 酵素化学の研究。 リチウムイオンバッテリーの持続可能な代替手段の探索。 慣性収束融合実験用の材料モデリング。 実用的な量子コンピュータはまだ利用できませんが、彼らの取り組みは結果としてこれらの応用の効率的な量子アルゴリズムを実行するために必要なハードウェアの仕様を提供します。 Boehringer Ingelheimとコロンビア大学との共同研究により、Google Quantum AIは酵素ファミリーCytochrome P450の複雑な電子構造の理解における量子コンピューティングの応用を探索しました。これらの酵素は薬物代謝において重要な役割を果たしています。古典的な手法と量子的な手法を比較することで、彼らは量子コンピュータの高い精度がこの系統の複雑な化学を正確に解決するために不可欠であることを示しました。研究では、量子の利点は系統の大きさが大きくなるにつれてますます顕著になり、この問題において量子の利点を実現するために数百万個の物理的なキュービットが必要であることを示しました。 リチウムイオンバッテリーはさまざまな応用に欠かせないものですが、しばしばコバルトに依存しており、環境上の懸念や倫理的な問題があります。研究者はコバルトの代替手段としてリチウムニッケル酸化物(LNO)を探求しました。LNOの特性を理解することが重要です。「Bloch軌道を用いた物質の耐故障性量子シミュレーション」と題された論文では、BASF、QSimulate、マクワリー大学との共同研究により、LNOのような周期的な原子構造に対する量子シミュレーション技術が開発されました。彼らの研究では、量子コンピュータがLNOのエネルギーを効率的に計算できることが分かりましたが、現時点では実用的ではないほどの量のキュビットが必要とされており、将来の改善に期待が寄せられています。 研究者は、極限条件下での慣性収束融合実験のための量子シミュレーションを探求しています。これは反応速度の計算に焦点を当てており、炉の効率にとって重要です。量子アルゴリズムは有望であり、リソース要件は以前の応用の間に位置づけられています。不確定性は残りますが、これは複雑なシステムのシミュレーションにおいて系統的なエラーを導入する平均場法に依存する古典的な代替手法よりも優れています。 研究者は物理系のシミュレーションに対するエラーコレクションされた量子コンピュータの将来的な具体的な応用を提示し、複雑な問題を解決する可能性を示しています。静的な基底状態の問題とは異なり、量子ダイナミクスは時間の経過に伴う量子システムの進化を伴います。共同研究により、量子アルゴリズムが効率と精度において近似的な古典的な計算を上回ることが明らかになりました。これらのアルゴリズムの開発は、エラーコレクションされた量子コンピュータの準備が整い、それらの能力についての誇張された主張を排除することを保証します。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us