Learn more about Search Results ​

「セキュアな会話:ChatGPTの使用時にプライバシーとデータを保護する 🛡️」

「情報を探すこと、助けを得ること、またはただおしゃべりすることであっても、ChatGPTのようなAIモデルは私たちの仮想の仲間となりましたこの記事では、安全な世界を見ていきます...」

AudioLDM 2, でも速くなりました ⚡️

AudioLDM 2は、Haohe Liuらによる「AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining」で提案されました。AudioLDM 2は、テキストプロンプトを入力として受け取り、対応するオーディオを予測します。リアルな音効、人の声、音楽を生成することができます。 生成されるオーディオは高品質ですが、元の実装での推論の実行は非常に遅いです。10秒のオーディオサンプルを生成するのに30秒以上かかります。これは、深いマルチステージのモデリングアプローチ、大きなチェックポイントサイズ、最適化されていないコードなど、複数の要素の組み合わせによるものです。 このブログ記事では、Hugging Faceの🧨 Diffusersライブラリを使用してAudioLDM 2を使用する方法を紹介し、半精度、フラッシュアテンション、コンパイルなどのコードの最適化、スケジューラの選択、ネガティブプロンプティングなどのモデルの最適化を探求します。その結果、推論時間を10倍以上短縮でき、出力オーディオの品質の低下は最小限です。ブログ記事には、コードはすべて含まれていますが、説明は少なめです。 最後まで読んでください。わずか1秒で10秒のオーディオサンプルを生成する方法がわかります! モデルの概要 Stable Diffusionに触発され、AudioLDM 2はテキストからオーディオへの潜在的な拡散モデル(LDM)であり、テキストの埋め込みから連続的なオーディオ表現を学習します。 全体の生成プロセスは以下のように要約されます: テキスト入力x\boldsymbol{x}xを与えると、2つのテキストエンコーダーモデルが使用され、テキストの埋め込みが計算されます:CLAPのテキストブランチとFlan-T5のテキストエンコーダー…

Databricks ❤️ Hugging Face 大規模言語モデルのトレーニングとチューニングが最大40%高速化されました

生成AIは世界中で大きな注目を集めています。データとAIの会社として、私たちはオープンソースの大規模言語モデルDollyのリリース、およびそれを微調整するために使用した研究および商用利用のための内部クラウドソーシングデータセットであるdatabricks-dolly-15kのリリースと共にこの旅に参加してきました。モデルとデータセットはHugging Faceで利用可能です。このプロセスを通じて多くのことを学びましたが、今日はApache Spark™のデータフレームから簡単にHugging Faceデータセットを作成できるようにするHugging Faceコードベースへの初めての公式コミットの1つを発表することを喜んでお知らせします。 「Databricksがモデルとデータセットをコミュニティにリリースしてくれたのを見るのは素晴らしいことでしたが、それをHugging Faceへの直接のオープンソースコミットメントにまで拡張しているのを見るのはさらに素晴らしいことです。Sparkは、大規模なデータでの作業に最も効率的なエンジンの1つであり、その技術を使用してHugging Faceのモデルをより効果的に微調整できるようになったユーザーを見るのは素晴らしいことです。」 — Clem Delange、Hugging Face CEO Hugging Faceが一流のSparkサポートを受ける 過去数週間、ユーザーから、SparkのデータフレームをHugging Faceデータセットに簡単にロードする方法を求める多くのリクエストを受け取りました。今日のリリースよりも前は、SparkのデータフレームからHugging Faceデータセットにデータを取得するために、データをParquetファイルに書き込み、それからHugging Faceデータセットをこれらのファイルに指定して再ロードする必要がありました。たとえば: from datasets import load_dataset train_df…

「Langchain x OpenAI x Streamlit — ラップソングジェネレーター🎙️」

「LangchainフレームワークをStreamlitとOpenAIのGPT3モデルに統合したWebアプリを作成する方法」

スノーボールファイト ☃️をご紹介しますこれは私たちの最初のML-Agents環境です

私たちは、初めてのカスタムDeep Reinforcement Learning環境:Snowball Fight 1vs1 🎉を共有できることを嬉しく思います。 Snowball Fightは、Unity ML-Agentsを使用して作成されたゲームで、Deep Reinforcement Learningエージェントに対して雪玉を撃つことができます。このゲームはHugging Face Spacesでホストされています。 👉オンラインでプレイすることができます この投稿では、Unity ML-Agentsを使用するDeep Reinforcement Learning研究者や愛好家向けのエコシステムについて説明します。 Hugging FaceのUnity ML-Agents Unity Machine Learning…

⚔️AI vs. AI⚔️は、深層強化学習マルチエージェント競技システムを紹介します

私たちは新しいツールを紹介するのを楽しみにしています: ⚔️ AI vs. AI ⚔️、深層強化学習マルチエージェント競技システム。 このツールはSpacesでホストされており、マルチエージェント競技を作成することができます。以下の3つの要素で構成されています: マッチメイキングアルゴリズムを使用してモデルの戦いをバックグラウンドタスクで実行するスペース。 結果を含むデータセット。 マッチ履歴の結果を取得し、モデルのELOを表示するリーダーボード。 ユーザーが訓練済みモデルをHubにアップロードすると、他のモデルと評価およびランキング付けされます。これにより、マルチエージェント環境で他のエージェントとの評価が可能です。 マルチエージェント競技をホストする有用なツールであるだけでなく、このツールはマルチエージェント環境での堅牢な評価技術でもあると考えています。多くのポリシーと対戦することで、エージェントは幅広い振る舞いに対して評価されます。これにより、ポリシーの品質を良く把握することができます。 最初の競技ホストであるSoccerTwos Challengeでどのように機能するか見てみましょう。 AI vs. AIはどのように機能しますか? AI vs. AIは、Hugging Faceで開発されたオープンソースのツールで、マルチエージェント環境での強化学習モデルの強さをランク付けするためのものです。 アイデアは、モデルを継続的に互いに対戦させ、その結果を使用して他のすべてのモデルと比較してパフォーマンスを評価し、ポリシーの品質を把握するための相対的なスキルの尺度を得ることです。従来のメトリクスを必要とせずに。 エージェントが特定のタスクや環境に提出される数が増えるほど、ランキングはより代表的になります。 競争環境での試合結果に基づいて評価を生成するために、私たちはELOレーティングシステムを基にランキングを作成することにしました。…

チャットボットは学校での不正行為を助長しているのか?最新の研究結果が驚くべき結果を明らかにしています

「スタンフォード大学の研究者によると、ChatGPTなどのA.I.ツールの使用は高校での不正行為の増加にはつながらなかったということが分かりましたこの結果は、この種のツールの効果的かつ倫理的な使用を証明する上で非常に価値があります」

「🤖 リーダーズエンダーリークのための道を作ります:水中技術のブレイクスルー 🌊」

「スイス連邦工科大学ローザンヌ校による最先端のイノベーションは、ウナギの動きに着想を得た驚くべき耐水性ロボットを生み出しましたこの高度な装置は様々なパターンでうねることができ、潜在的な用途において貴重なアセットとなります」

📱 アップルが不正な認証からのiMessageアクセスをブロック

アップルは積極的な対策を実施することで顧客の安全を最優先に考えていますしかし、Beeperによると、彼らの最新の行動は逆効果になってしまったようですしかし、アップルは顧客の安全を重視し、積極的な対策を実施する姿勢は評価されるべきです

「2023年、オープンLLMの年」

2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us