Learn more about Search Results $1,27,002
- You may be interested
- 「脳と体をモニターするイヤホン」
- 「BERTをゼロからトレーニングする究極の...
- 「「AIの仕組み:魔法から科学へ」の著者...
- 『FastSpeech:論文の概要と実装』
- Googleの研究者が新たな大規模言語モデル...
- 「NvidiaのH200 GPUは、AI技術における里...
- 実践におけるFew-shot学習:GPT-Neoと🤗高...
- 「UMass Amherstのコンピュータ科学者がAI...
- シンガポール国立大学の研究者が提案するM...
- チャットGPTを使用して複雑なシステムを構...
- 「8月7日〜13日のトップ投稿:ChatGPTを忘...
- 「MITの研究者がPFGM++を紹介:物理学とAI...
- 科学者は、脅かされている氷河にセンサー...
- ユレカ:大規模な言語モデルをコーディン...
- 「6Gは、気候変動の監視に二重の役割を果...
オンラインで機械学習を学ぶ方法
導入 機械学習は現在高度に発展している技術の分野です。この技術により、コンピュータシステムは技術的なプログラミングなしで学習し、意思決定を行うことができます。機械学習には、パターンの認識、データ分析、時間とともに性能を向上させるなど、さまざまな応用があります。このオンライン機械学習の学習方法ガイドでは、最も優れたオンライン機械学習コースを紹介し、適切なコースを選ぶお手伝いをします。 機械学習とは何ですか? 機械学習は、人間が問題を解決し意思決定する方法と同様に、データとアルゴリズムを使用して人工知能の領域を利用します。時間とともにその効率を高めます。機械学習の種類には以下のものがあります。 教師あり学習: このタイプの機械学習はデータに依存し、システムが学習するためのアルゴリズムを提供します。ユーザーが提供する出力結果は、ラベル付きのデータセットであり、その他のデータは入力フィーチャーとして使用されます。例えば、ソフトウェアの失敗の統計と原因を理解したいとします。その場合、失敗した10のソフトウェアとその原因を説明と共に、成功した10のソフトウェアとその理由のデータを機械に与えます。ラベル付きデータは、探しているデータをシステムに理解させます。 教師なし学習: 教師なし学習は、ラベル付きのデータセットやデータに依存しません。このタイプの機械学習は予測モデルを作成するのに役立ちます。教師なし学習で最もよく使用されるモデルには以下があります: 隠れマルコフモデル k-means 階層的クラスタリング ガウス混合モデル 強化学習: 強化学習は人間の知識に似ています。このモデルは環境との相互作用に依存し、正のフィードバックまたは否定的なフィードバックを得ることにより進化します。試行錯誤の方法を使用します。 なぜオンラインで機械学習を学ぶのですか? オンラインで機械学習を学ぶことで、最高の機械学習プログラムを通して柔軟な学習の機会を体験することができます。オンラインで専門スキルを学ぶことには、次のような多くの利点があります: アクセスの容易さ: コースプロバイダーが提供する大量の情報とデータにいつでもどこでもアクセスできます。 柔軟性: 学習時間やペースを調整することができます。最高の機械学習コースでは、特定の時間枠内での学習に拘束される必要がありません。 費用効果の高さ: オンラインの機械学習コースは、インフラ、メンテナンス、サービスに関連するコストを含めて、比較的手頃な価格で提供されます。 産業関連のコンテンツ: オンライン学習では、産業のトレンドに関連したコンテンツが提供されます。このような学習は、技術の世界のトレンドに追いつくことができます。…
商品化されたサービス101:フリーランサーを殺す一人ビジネス(次は従業員)
新しく改善されたサービスビジネスモデルは、フリーランサーや従来の代理店、さらには従業員からの仕事を吸い込んでいます
「Amazon SageMaker JumpStartでMistral 7Bを調整して展開する」
今日は、Amazon SageMaker JumpStartを使用してMistral 7Bモデルを微調整する機能を発表できることをお知らせいたしますAmazon SageMaker StudioのUIを使用して、数回のクリックでSageMaker JumpStartでMistralテキスト生成モデルを微調整して展開することができますまたは、SageMaker Python SDKを使用することもできます基盤となるモデルは生成タスクのパフォーマンスが非常に良いです、[…]
「ゼロからLLMを構築する方法」
「これは、大規模言語モデル(LLM)を実践的に使用するシリーズの6番目の記事です以前の記事では、プロンプトエンジニアリングとファインチューニングを通じて事前学習済みのLLMを活用する方法について詳しく調査しましたこれらに対して…」
「Amazon TextractとAmazon OpenSearchを使用してスマートなドキュメント検索インデックスを実装する」
この投稿では、ドキュメント検索インデックスソリューションを迅速に構築および展開する旅に連れて行きますこのソリューションは、組織がドキュメントから洞察をより効果的に抽出するのを支援します例えば、人事部門では従業員契約の特定の条項を探しているか、財務アナリストでは支払いデータを抽出するために膨大な数の請求書を選別している場合でも、このソリューションは、あなたが必要な情報に前例のない速度と正確さでアクセスできるようにするためにカスタマイズされています
SaneBoxのレビュー:メールを整理して生産性を向上させる
このSaneBoxのレビューでは、AIを活用した最高のメール管理ソフトウェアの機能と利点を探求し、受信トレイを最適化します
Falcon-7Bの本番環境への展開
これまでに、ChatGPTの能力と提供するものを見てきましたしかし、企業利用においては、ChatGPTのようなクローズドソースモデルは、企業がデータを制御できないというリスクがあるかもしれません...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.