『強化学習における大規模な行動空間を処理する5つの方法』

5 methods for handling large action spaces in reinforcement learning

アクション空間は、特に組み合わせ最適化問題では大きくなりすぎる可能性があります。この記事では、それらを処理するための5つの戦略について説明します。

And…action! [Photo by Jakob Owens on Unsplash]

大きなアクション空間を処理することは、強化学習においてまだ解決が難しい問題です。状態空間が大きい場合には、畳み込みネットワークやトランスフォーマーなどの最近の注目される例を使って、大きな進歩が見られます。しかし、次元の呪いとして知られるものが3つあります:状態、結果、そしてアクションです[1]。しかしながら、後者はまだ十分に研究されていません。

それにもかかわらず、大きなアクション空間を処理するための手法が増えてきています。この記事では、特に組み合わせ最適化問題でよく遭遇する高次元の離散的なアクション空間に焦点を当てながら、それらを処理する5つの方法を紹介します。

復習:次元の呪い3つ

次元の呪い3つについて簡単に復習しましょう。手元の問題をベルマン方程式の系として表現すると、評価する必要がある3つの集合があります。実際にはネストされたループの形で表現され、それぞれが非常に大きくなる可能性があります:

Reinforcement Learningは、全ての可能な結果を列挙する代わりに、ランダムな遷移をサンプリングするモンテカルロシミュレーションです。大数の法則により、サンプルの結果は最終的に真の値に収束するはずです。この方法により、確率的な問題を決定論的な問題に変換します:

この変換により、大きな結果空間を扱うことができます。大きな状態空間を扱うためには、以前に見たことのない状態にも一般化できる能力が必要です。一般的なアプローチは特徴抽出や集約であり、ここに研究の大部分が集中しています。

状態とアクションのペアに対応する単一の値を評価することができるため、数百から数千のアクションを評価することは問題ではないことが多いです。多くの問題(例:チェス、ビデオゲーム)ではこれで十分であり、アクションに関してさらなる近似をする必要はありません…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

サムスンはAIとビッグデータを採用し、チップ製造プロセスを革新します

世界的なメモリチップメーカーであるSamsung Electronics Co.は、最先端の人工知能(AI)とビッグデータ技術を活用して、チッ...

人工知能

2023年に使用するための10の最高のAI画像生成ツール

2023年、最高のAI画像生成ツールは非常に複雑で高度であり、ユニークなデザインを育んでいます。デザイナーは時間制約やクリ...

機械学習

誰が雨を止めるのか? 科学者が気候協力を呼びかける

トップの科学者3人が、コンピューティング史上最も野心的な取り組みの一環として、地球のデジタルツインの構築を支援していま...

機械学習

このAIペーパーは、東京大学で深層学習を超新星シミュレーションの問題に応用しました

東京大学の研究者チームは、3D-Memory In Memory (3D-MIM) と呼ばれる深層学習モデルを開発しました。このモデルは、超新星(S...

機械学習

このAI論文では、リーマン幾何学を通じて拡散モデルの潜在空間の理解に深入りします

人工知能や機械学習の人気が高まる中で、自然言語処理や自然言語生成などの主要なサブフィールドも高速に進化しています。最...

AIテクノロジー

プロンプトからテキストを生成するためのモデルの作成

導入 急速に進化するGenerative AIの風景において、新たな時代が訪れました。この変革的なシフトにより、AIアプリケーション...