『強化学習における大規模な行動空間を処理する5つの方法』

5 methods for handling large action spaces in reinforcement learning

アクション空間は、特に組み合わせ最適化問題では大きくなりすぎる可能性があります。この記事では、それらを処理するための5つの戦略について説明します。

And…action! [Photo by Jakob Owens on Unsplash]

大きなアクション空間を処理することは、強化学習においてまだ解決が難しい問題です。状態空間が大きい場合には、畳み込みネットワークやトランスフォーマーなどの最近の注目される例を使って、大きな進歩が見られます。しかし、次元の呪いとして知られるものが3つあります:状態、結果、そしてアクションです[1]。しかしながら、後者はまだ十分に研究されていません。

それにもかかわらず、大きなアクション空間を処理するための手法が増えてきています。この記事では、特に組み合わせ最適化問題でよく遭遇する高次元の離散的なアクション空間に焦点を当てながら、それらを処理する5つの方法を紹介します。

復習:次元の呪い3つ

次元の呪い3つについて簡単に復習しましょう。手元の問題をベルマン方程式の系として表現すると、評価する必要がある3つの集合があります。実際にはネストされたループの形で表現され、それぞれが非常に大きくなる可能性があります:

Reinforcement Learningは、全ての可能な結果を列挙する代わりに、ランダムな遷移をサンプリングするモンテカルロシミュレーションです。大数の法則により、サンプルの結果は最終的に真の値に収束するはずです。この方法により、確率的な問題を決定論的な問題に変換します:

この変換により、大きな結果空間を扱うことができます。大きな状態空間を扱うためには、以前に見たことのない状態にも一般化できる能力が必要です。一般的なアプローチは特徴抽出や集約であり、ここに研究の大部分が集中しています。

状態とアクションのペアに対応する単一の値を評価することができるため、数百から数千のアクションを評価することは問題ではないことが多いです。多くの問題(例:チェス、ビデオゲーム)ではこれで十分であり、アクションに関してさらなる近似をする必要はありません…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

AWSを使用したジェネレーティブAIを使用したサーバーレスイメージ生成アプリケーション

このチュートリアルでは、Amazon Bedrockを使用してGoで画像生成ソリューションを構築し、AWS CDKを使用して展開する方法を学...

人工知能

作曲家:AIツールを使った投資の学び方

もし投資の世界について理解することが苦手なら、Composer(AI投資ツール)があなたの解決策かもしれません

機械学習

GLIP オブジェクト検出への言語-画像事前学習の導入

今日は、言語-画像の事前学習であるCLIPの素晴らしい成功を基に、物体検出のタスクに拡張した論文であるGLIPについて掘り下げ...

機械学習

「機械学習手法を用いたJava静的解析ツールレポートのトリアージに関する研究」

この研究では、最新の機械学習技術を利用して、Java静的解析ツールからの効果的な発見の選別について詳しく探求しています

データサイエンス

生成AIモデル:マーチャンダイジング分析のユーザーエクスペリエンス向上

私たちのデータプラットフォームで利用可能なデータについて、ビジネスユーザーが何でも尋ねることができるように、生成型AI...

人工知能

5つのAI自動化エージェンシーのアイデア(毎月45,000ドルを稼ぐための)

このAIビジネスモデルは、オンラインビジネスにおいて次の大きなトレンドと予測されています...