「高い基数を持つカテゴリカルな特徴をエンコードするための4つの方法 — Pythonでの実装」となります

4 methods for encoding categorical features with high cardinality - Python implementation

scikit-learnとTensorFlowを使用してターゲットエンコーディング、カウントエンコーディング、特徴ハッシング、および埋め込みを適用する方法を学ぶ

“Click” — Photo by Cleo Vermij on Unsplash

本記事では、高基数のカテゴリカル変数をエンコードするための4つの人気のある方法、つまり(1) ターゲットエンコーディング、(2) カウントエンコーディング、(3) 特徴ハッシング、および(4) 埋め込みについて説明します。

それぞれの方法の動作原理、利点と欠点、および分類タスクのパフォーマンスへの影響について説明します。

目次

— カテゴリカル特徴の紹介 (1) なぜカテゴリカル特徴をエンコードする必要があるのか? (2) ワンホットエンコーディングは高基数に適していない理由 — AdTechデータセットへの適用 — 各エンコーディング方法の概要 (1) ターゲットエンコーディング (2) カウントエンコーディング (3) 特徴ハッシング (4) 埋め込み — CTR予測のパフォーマンスの比較 — 結論 — 更なる学習のために

カテゴリカル特徴の紹介

カテゴリカル特徴は、カテゴリまたはグループ(例:性別、色、国)を説明する変数の一種です。これに対し、数値特徴は数量を測定する変数です(例:年齢、身長、温度)。

カテゴリデータには、順序特徴(Tシャツのサイズやレストランの評価など、カテゴリをランク付けおよびソートできるもの)と名義特徴(人の名前、都市の名前など、意味のある順序を示さないカテゴリ)の2つのタイプがあります。

なぜカテゴリカル特徴をエンコードする必要があるのか?

カテゴリカル変数のエンコードとは、カテゴリを数値に変換するマッピングを見つけることを意味します。

一部のアルゴリズムはカテゴリカルデータを直接扱うことができますが(決定木など)、ほとんどの機械学習モデルはカテゴリカル特徴を処理できず、数値特徴として扱うことを前提として設計されています

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

AIニュース

Q&A:ブラジルの政治、アマゾンの人権、AIについてのGabriela Sá Pessoaの見解

ブラジルの社会正義のジャーナリストは、MIT国際研究センターのフェローです

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

人工知能

「Kognitosの創設者兼CEO、ビニー・ギル- インタビューシリーズ」

ビニー・ギルは、複数の役職と企業を横断する多様で幅広い業務経験を持っていますビニーは現在、Kognitosの創設者兼CEOであり...

AIテクノロジー

アンソニー・グーネティレケ氏は、Amdocsのグループ社長であり、テクノロジー部門および戦略部門の責任者です- インタビューシリーズ

アンソニー・グーネティレーケは、Amdocsでグループ社長、テクノロジーと戦略担当です彼と企業戦略チームは、会社の戦略を策...