「業界アプリケーションにおける大規模言語モデルを評価するための4つの重要な要素」

4 Important Elements for Evaluating Large Language Models in Industry Applications

ユースケースは、顧客のニーズと業界固有のガイドラインによって異なります。4つの重要な指標を使用して、適切なLLMの選択方法を学びましょう。

LLM Decision Metrics | Skanda Vivek

過去数ヶ月間、私は法律、医療、金融、テクノロジー、保険業界の人々とLLMの導入について話す機会がありました。それぞれが独自の要件と課題を持っています。たとえば、医療ではプライバシーが最重要視されます。金融では、正確な数字を得ることが最も重要です。弁護士は、法的文書の起草などのタスクに特化した、調整されたモデルを望んでいます。

この記事では、特定のケースに適したモデルを選ぶのに役立つ主要な意思決定要素について説明していきます。

レスポンス品質

サティア・ナデラは、Microsoft Inspireの2023年の基調講演で述べたように、生成AIが導入する主要なパラダイムシフトは2つあります:

  1. より自然な言語のコンピュータインターフェース
  2. すべてのカスタムドキュメントの上に配置された推論エンジン

レスポンス品質は、これらの2つの使用カテゴリーで非常に重要です。コンピュータとのインターフェースは、ますます自然な言語に近づいてきています(PythonがC++と比較してどれだけ友好的であるか、またはC++がマシン言語と比較してどれだけ友好的であるかを考えてみてください)。しかし、これらのプログラミング言語の信頼性は、実際には問題になったことはありません。問題がある場合は、プログラミングのバグと呼び、それを人間のエラーとして扱います。しかし、LLMからのより自然なインターフェースは、幻想的な回答をしたり、間違った回答をしたりすることで知られているため、新しいタイプの「AIバグ」が導入されます。したがって、レスポンス品質は非常に重要です。

2番目のユースケースでも同様です。私たちはみなGoogle検索を使用するのに慣れていますが、Googleはベクトル埋め込みや他のマッチング技術を使用して、質問に対する回答を含む可能性が最も高いページを見つけ出しています。ページが間違った結果を表示する場合、これもまた人間のエラーであり、誤った情報をリストする人間のミスです。しかし、LLMは再び回答…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「次世代ニューラルネットワーク:NeurIPSでの多くのAIの技術進歩をNVIDIA Researchが発表」

世界中の学術機関と協力して、NVIDIAの研究者は< a href=”https://www.voagi.com/ai-for-sustainable-banking-reduc...

AI研究

Google AIとフロリダ中央大学の研究者が、包括性と多様性のためのオープンソースのバーチャルアバターライブラリ(VALID)を発表しました

Google AR&amp;VRチームは、センサスビューローに従って7つの異なる人種を表す210の完全なリグ付きアバターで構成されるバー...

人工知能

「顔認識システムにおけるバイアスの解消 新しいアプローチ」

この記事では、顔認識システムにおけるバイアスに関する問題を探求し、開発者がこの問題を軽減するために採用できる潜在的な...

AIニュース

スケーリングダウン、スケーリングアップ:モデルの量子化での生成AIのマスタリング

紹介 人工知能の進化する風景の中で、生成型AIは確実に革新の中核となってきました。これらの高度なモデルは、芸術の創造、テ...

人工知能

「オッペンハイマーからジェネラティブAIへ:今日の企業にとっての貴重な教訓」

先週末、最新の大ヒット作品「オッペンハイマー」を劇場で3時間観ましたストーリー全体と結末はすでに知っていたにも関わらず...

データサイエンス

「新時代のAI/MLのためのソフトウェア/ハードウェアアーキテクチャをどのように共同設計するか?」

最新の生成AI技術は、コンピュータビジョン、自然言語処理などで爆発的な成長を遂げ、画期的なモデルアーキテクチャの研究に...