GPTQによる4ビット量子化

4ビット量子化 by GPTQ

AutoGPTQを使用して独自のLLMを量子化する

Image by author

重み量子化の最近の進歩により、私たちはGPTQ、GGML、およびNF4のような性能低下が最小限の4ビット量子化技術を使用して、LLaMA-30BモデルをRTX 3090 GPU上の一般消費者向けハードウェアで実行することができるようになりました。

前の記事では、素朴な8ビット量子化技術と優れたLLM.int8()を紹介しました。今回の記事では、人気のあるGPTQアルゴリズムを探求し、AutoGPTQライブラリを使用して実装してみます。

コードはGoogle ColabとGitHubで見つけることができます。

🧠 最適な脳量子化

まず、解決しようとしている問題を紹介しましょう。ネットワークの各層ℓに対して、元の重みWₗの量子化バージョンŴₗを見つけたいとします。これを層ごとの圧縮問題と呼びます。具体的には、性能低下を最小限に抑えるために、これらの新しい重みの出力(ŴXᵨ)が元の出力(WXᵨ)にできるだけ近くなるようにしたいとします。つまり、次のようなものを見つけたいとします:

この問題を解決するためにはさまざまなアプローチが提案されていますが、ここでは最適な脳量子化(OBQ)フレームワークに興味があります。

このメソッドは、完全にトレーニングされた密なニューラルネットワークから重みを慎重に削除するための剪定技術(Optimal Brain Surgeon)に触発されています。これは近似技術を使用し、最良の単一の重みw𐞥を削除するための明示的な式と、残りの非量子化された重みFを調整するための最適な更新δꟳを提供します:

ここで、quant(w)は量子化による重みの丸めを表し、Hꟳはヘッシアンです。

OBQを使用することで、最も簡単な重みを最初に量子化し、その精度損失を補うために残りの非量子化重みFを調整します。次に、次の重みを量子化し、以降の作業を続けます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

Diginiのスマートセンスの社長、ガイ・イエヒアブによるインタビューシリーズ

ガイ・イハイアヴ氏は、ビジネスの成功に最も重要な資産を保護するためにインターネット・オブ・シングス(IoT)の力を活用す...

人工知能

「マーク・A・レムリー教授による生成AIと法律について」

データサイエンス内で新しい分野が現れ、研究内容が理解しにくい場合は、専門家やパイオニアと話すことが最善です最近、私た...

データサイエンス

アステラソフトウェアのCOO、ジェイ・ミシュラ - インタビューシリーズ

ジェイ・ミシュラは、急速に成長しているエンタープライズ向けデータソリューションの提供企業であるAstera Softwareの最高執...

人工知能

「ゲイリー・ヒュースティス、パワーハウスフォレンジクスのオーナー兼ディレクター- インタビューシリーズ」

ゲイリー・ヒュースティス氏は、パワーハウスフォレンジックスのオーナー兼ディレクターであり、ライセンスを持つ私立探偵、...

機械学習

3つの質問:大規模言語モデルについて、Jacob Andreasに聞く

CSAILの科学者は、最新の機械学習モデルを通じた自然言語処理の研究と、言語が他の種類の人工知能をどのように高めるかの調査...

人工知能

「ElaiのCEO&共同創業者、Vitalii Romanchenkoについてのインタビューシリーズ」

ヴィタリー・ロマンチェンコは、ElaiのCEO兼共同創設者であり、マイク、カメラ、俳優、スタジオの必要なく、個人が一流のビデ...