GPTQによる4ビット量子化

4ビット量子化 by GPTQ

AutoGPTQを使用して独自のLLMを量子化する

Image by author

重み量子化の最近の進歩により、私たちはGPTQ、GGML、およびNF4のような性能低下が最小限の4ビット量子化技術を使用して、LLaMA-30BモデルをRTX 3090 GPU上の一般消費者向けハードウェアで実行することができるようになりました。

前の記事では、素朴な8ビット量子化技術と優れたLLM.int8()を紹介しました。今回の記事では、人気のあるGPTQアルゴリズムを探求し、AutoGPTQライブラリを使用して実装してみます。

コードはGoogle ColabとGitHubで見つけることができます。

🧠 最適な脳量子化

まず、解決しようとしている問題を紹介しましょう。ネットワークの各層ℓに対して、元の重みWₗの量子化バージョンŴₗを見つけたいとします。これを層ごとの圧縮問題と呼びます。具体的には、性能低下を最小限に抑えるために、これらの新しい重みの出力(ŴXᵨ)が元の出力(WXᵨ)にできるだけ近くなるようにしたいとします。つまり、次のようなものを見つけたいとします:

この問題を解決するためにはさまざまなアプローチが提案されていますが、ここでは最適な脳量子化(OBQ)フレームワークに興味があります。

このメソッドは、完全にトレーニングされた密なニューラルネットワークから重みを慎重に削除するための剪定技術(Optimal Brain Surgeon)に触発されています。これは近似技術を使用し、最良の単一の重みw𐞥を削除するための明示的な式と、残りの非量子化された重みFを調整するための最適な更新δꟳを提供します:

ここで、quant(w)は量子化による重みの丸めを表し、Hꟳはヘッシアンです。

OBQを使用することで、最も簡単な重みを最初に量子化し、その精度損失を補うために残りの非量子化重みFを調整します。次に、次の重みを量子化し、以降の作業を続けます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ベイリー・カクスマー、ウォータールー大学の博士課程候補 - インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です...

人工知能

「コマンドバーの創設者兼CEO、ジェームズ・エバンスによるインタビューシリーズ」

ジェームズ・エバンズは、CommandBarの創設者兼CEOであり、製品、マーケティング、顧客チームを支援するために設計されたAIパ...

人工知能

「リオール・ハキム、Hour Oneの共同創設者兼CTO - インタビューシリーズ」

「Hour Oneの共同創設者兼最高技術責任者であるリオール・ハキムは、専門的なビデオコミュニケーションのためのバーチャルヒ...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

人工知能

『DeepHowのCEO兼共同創業者、サム・ジェン氏によるインタビューシリーズ』

ディープハウのCEO兼共同創設者であるサム・ジェンは、著名な投資家から支持される急速に進化するスタートアップを率いていま...

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...