『3Dディープラーニングへの道:Pythonでの人工ニューラルネットワーク』

3Dディープラーニングへの道

Python で人工ニューラルネットワークの力を解放する初心者向けハンズオンガイド

人工ニューラルネットワークのラスター、ベクトル、3Dポイントクラウドへの応用。© F. Poux

人工知能の領域において、人工ニューラルネットワークほどの注目を集め、画期的な成功を収めた技術はほとんどありません。人間の複雑な相互接続性に触発されたこの堅牢なアルゴリズム構造は、本当に、深層学習の分野を革新し、前例のない機械知能の時代へと私たちを推進しています。

AI技術の「深さレベル」:機械学習、人工ニューラルネットワーク、深層学習。© F. Poux

さあ、私のタスクは、ディープラーニング(DL)における最高の難易度レベルの1つである3Dの領域に進むことができるようにすることです!

ビデオゲームのようです。楽しくするために難易度レベルを選ぶ必要があります!© F. Poux

しかし、このクエストでは、スタンドアロンのアプリケーションとしても作業できるようにする必要もあります(はい、あなたはライフアプリです 😁)。この旅を進めるために、DLの概念、コーディングのノウハウ、3Dビジョン、そして究極の楽しいガイドを備えて、次のビッグなものを作り出すための全ての要素を揃えます。

このセッションでは、簡単なタスクで人工ニューラルネットワークの基礎を動かすための興奮する旅に乗り出します。それは画像分類です。これは、バックプロパゲーション、最適化アルゴリズム、損失関数に触れる、訓練されたニューラルネットワークモデルを作成するための核心概念(アーキテクチャ、レイヤー、活性化関数)を解き明かすためのパラグマティックなプレイグラウンドです。

人工ニューラルネットワークの概念をPythonと画像分類目標と組み合わせたパワー。© F. Poux

このチュートリアルを4つの主要なステップに分解しました。以下のイラストを参考にしながら進めていきます。

このミッションで効率的にANNを使用するために私たちがたどっているワークフロー。© F. Poux

私はわかっています、あなたは今まで以上に準備ができています。では、賢い脳内に一部のHDDスペースを開放して、最初のものをダウンロードしましょう…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

『FastSpeech:論文の概要と実装』

2019年、FastSpeechはニューラルテキスト音声変換のフロンティアを推し進め、推論速度を大幅に改善しながら、単語の繰り返し...

データサイエンス

データ汚染とモデル崩壊:迫りくるAIの災害

AI生成コンテンツの存在は、疫病のように広がり、検索結果を毒し、さらにAIモデルを崩壊させるでしょう

人工知能

「DALL·E 3の最も優れた20の使用例とプロンプト」

OpenAIは、テキストから画像を生成するプラットフォームであるDALL-E 3の大規模なアップデートを発表しましたこのアップデー...

機械学習

このAIニュースレターは、あなたが必要なもの全てです#58

今週、私たちはNLPの領域外でAIの2つの新しい進展を見ることに興奮しましたMeta AIの最新の開発では、彼らのOpen Catalystシ...

機械学習

Word2Vec、GloVe、FastText、解説

コンピューターは我々と同じように単語を理解することができませんコンピューターは数字を扱うことが好きですですから、コン...

AIニュース

アマゾンがベッドロックを展開:AIモデルの評価と人間のベンチマーキング

開発において、Amazon Bedrockは、特定のニーズに合わせて選択し、比較し、最適なファウンデーションモデル(FM)を選択する...