金融におけるデジタルトランスフォーメーション:機械学習が金融サービスを再定義し、技術的負債を克服する方法
金融のデジタルトランスフォーメーション:機械学習による金融サービス再定義と技術的負債の克服方法
金融における機械学習の重要な役割、見過ごされたバックエンドの問題と今後の展望
イントロダクション
金融サービスにおけるデジタルトランスフォーメーションについて話す際に、重要な問題として思い浮かぶのは2つあります:伝統的な金融機能の重要性と「テクノロジーの負債」のコストです。
この記事では、機械学習がこれらの2つのトピックの橋渡しとなる方法、そしてデジタルトランスフォーメーション担当者のツールボックスにおいてどのように重要なツールとなっているかについて議論します。具体例を挙げながら、これらの伝統的な機能における成功した変革はバックエンドプロセスの見直しも含む必要があることを考えます。
金融サービスにおけるデジタルトランスフォーメーションの必要性
金融におけるデジタルトランスフォーメーションの必要性は、単なる見た目を整えるための美の競争ではなく、むしろ生存に必要なものです。金融サービス企業の利益率が低下していることを見れば分かりますが、これらの利益率を維持する方法の一つは、業務効率を向上させることです。業務効率は、おそらく既にご存知のように、デジタルトランスフォーメーションの目標の一つです。
それならば、なぜ金融企業はデジタルトランスフォーメーションの取り組みに遅れをとっているのでしょうか?これは「テクノロジーの負債」に関係があります。
- 自己対戦を通じて単純なゲームをマスターするエージェントのトレーニング
- メタAIは、122の言語に対応した初の並列読解評価ベンチマーク「BELEBELE」をリリースしました
- 機械学習:中央化とスケーリングの目的を理解する
テクノロジーの負債のコスト
しばしば過小評価されるテクノロジーの負債は、完全なデジタルトランスフォーメーションへの見えない障害物となります。テクノロジーの負債、または「技術的負債」として知られるものは、システム設計やソフトウェアアーキテクチャの不備による結果を金融的負債と同等に考える比喩です。
金融的負債と同様に、テクノロジーの負債も時間の経過とともに「利子」が蓄積されます。それは保守コストの増加、柔軟性の低下、複雑性の増加などの形で現れます。この負債はしばしば見えないものです。直ちに問題として現れるわけではありませんが、徐々に効率性と柔軟性を損ないます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「AIは本当に低品質な画像から顔の詳細を復元できるのでしょうか? DAEFRとは何か:品質向上のためのデュアルブランチフレームワークに出会う」
- 「マイクロソフトが、自社の新しい人工知能搭載スマートバックパックに関する特許を申請」
- このAI論文は、大規模な言語モデルにおける長期的な会話の一貫性を向上させるための再帰的なメモリ生成手法を提案しています
- 「フラミンゴとDALL-Eはお互いを理解しているのか?イメージキャプションとテキストから画像生成モデルの相互共生を探る」
- 自動小売りチェックアウトは、ラベルのない農産物をどのように認識するのか? PseudoAugmentコンピュータビジョンアプローチとの出会い
- 専門家モデルを用いた機械学習:入門
- 「Amazon SageMakerでのRayを使用した効果的な負荷分散」