疾病の原因を特定するための遺伝子変異のカタログ

遺伝子変異カタログ

新しいAIツールが、7100万の「ミスセンス」変異の効果を分類します

疾病の根本原因を解明することは、人間の遺伝学における最大の課題の一つです。数百万の可能な変異と限られた実験データの中で、どれが疾病の原因になり得るかはまだ謎のままです。この知識は、迅速な診断と命を救う治療法の開発に不可欠です。

今日、研究者がそれらがどのような効果を持つかをより詳しく学べる「ミスセンス」変異のカタログを公開しています。ミスセンス変異は、人間のタンパク質の機能に影響を与える遺伝子変異です。一部の場合、システィック線維症、鎌状赤血球貧血、またはがんなどの病気を引き起こす可能性があります。

AlphaMissenseカタログは、ミスセンス変異を分類するための新しいAIモデルであるAlphaMissenseを使用して開発されました。Scienceに掲載された論文では、AlphaMissenseが71百万の可能なミスセンス変異のうち89%を「おそらく病原性」または「おそらく良性」として分類したことを示しています。これに対して、人間の専門家によって確認されたのはわずか0.1%です。

変異の効果を正確に予測できるAIツールは、分子生物学から臨床および統計遺伝学までのさまざまな分野で研究を加速する力を持っています。疾病原因の変異を解明する実験は高価で手間のかかるものです。すべてのタンパク質はユニークであり、各実験は個別に設計する必要があります。これには数か月かかる場合もあります。AIの予測を使用することで、研究者は一度に何千ものタンパク質の結果のプレビューを得ることができます。これにより、リソースの優先順位を付けてより複雑な研究を加速することができます。

私たちはすべての予測を研究コミュニティに無料で提供し、AlphaMissenseのモデルコードをオープンソース化しました。

AlphaMissenseは、7100万のミスセンス変異の病原性を予測しました。89%を分類し、57%がおそらく良性であり、32%がおそらく病原性であると予測しました。

ミスセンス変異とは何ですか?

ミスセンス変異とは、タンパク質内の異なるアミノ酸につながるDNAの一文字の置換です。DNAを言語と考えると、1つの文字を変えることで単語が変わり、文の意味が完全に変わることがあります。この場合、置換はどのアミノ酸が翻訳されるかを変え、タンパク質の機能に影響を与える可能性があります。

平均的な人は9,000以上のミスセンス変異を持っています。ほとんどは良性でほとんど影響を与えませんが、他のものは病原性であり、タンパク質の機能を深刻に乱します。ミスセンス変異は、少数または1つのミスセンス変異が直接的に疾病を引き起こす場合に、希少な遺伝病の診断に使用されます。また、2型糖尿病のような複雑な疾患の研究にも重要です。この疾患は、多様な遺伝的変化の組み合わせによって引き起こされることがあります。

ミスセンス変異の分類は、これらのタンパク質の変化のうち、どれが疾病の原因になり得るかを理解するための重要なステップです。すでに人間で見られた400万以上のミスセンス変異のうち、専門家によって病原性または良性と注釈されているのは2%に過ぎません。つまり、7100万の可能なミスセンス変異のうちの0.1%程度です。その他の変異は、「意義不明の変異」とされています。これは、その影響についての実験データや臨床データが不足しているためです。AlphaMissenseを使用することで、既知の疾患変異データベースで90%の精度を持つしきい値を使用して、89%の変異を分類することができるため、これまでで最も明確な画像が得られました。

病原性または良性:AlphaMissenseが変異を分類する方法

AlphaMissenseは、アミノ酸配列から科学に知られるほぼすべてのタンパク質の構造を予測した私たちの画期的なモデルAlphaFoldに基づいています。私たちの適応モデルは、タンパク質の個々のアミノ酸を変異させるミスセンスバリアントの病原性を予測することができます。

AlphaMissenseを訓練するために、私たちはAlphaFoldを微調整し、ヒトと密接に関連する霊長類集団で見られる変異を区別するラベルに適用しました。一般的に見られる変異は良性と見なされ、一度も見られない変異は病原性と見なされます。AlphaMissenseは、変異によるタンパク質構造の変化やタンパク質安定性への他の影響を予測しません。代わりに、関連するタンパク質配列と変異の構造的な文脈を活用して、変異が病原性である可能性を示す0から1のスコアを生成します。連続的なスコアにより、ユーザーは自分の精度要件に合わせて、変異を病原性または良性と分類するためのしきい値を選択できます。

AlphaMissenseがヒトのミスセンスバリアントを分類する方法のイラスト。ミスセンスバリアントが入力され、AIシステムはそれを病原性またはおそらく良性と評価します。AlphaMissenseは、構造的な文脈とタンパク質の言語モデリングを組み合わせており、ヒトと霊長類の変異集団周波数データベースで微調整されています。

AlphaMissenseは、遺伝子および実験的な基準において幅広い予測を達成し、そのようなデータを明示的にトレーニングしていない場合でも優れた性能を発揮します。私たちのツールは、ヒトの変異と疾患の関係に関する公共のアーカイブであるClinVarから変異を分類する際に他の計算方法を凌駕しました。また、私たちのモデルは実験室の結果を予測する際にも最も正確な方法であり、それは病原性を測定する異なる方法と一致していることを示しています。

AlphaMissenseがミスセンスバリアントの効果を予測する他の計算方法を上回る。左:Clinvar公開アーカイブからの変異を分類する際のAlphaMissenseと他の方法の性能を比較しています。灰色で表示されている方法はClinVarに直接トレーニングされており、このベンチマークでのパフォーマンスは、いくつかのトレーニング変異がこのテストセットに含まれているため、過剰評価されている可能性があります。右:生物学的な実験からの測定結果を予測する際のAlphaMissenseと他の方法の性能を比較するグラフ。

コミュニティリソースの構築

AlphaMissenseは、AlphaFoldをベースに、タンパク質に関する世界の理解をさらに深めるためのものです。1年前、私たちはAlphaFoldを使用して予測された2億のタンパク質構造を公開しました。これにより、世界中の数百万人の科学者が研究を加速し、新たな発見の道を開拓するのに役立っています。AlphaMissenseがゲノミクスの中心にある未解決の問題を解決するのにどのように役立つかを楽しみにしています。また、生物科学全体にわたっても期待しています。

AlphaMissenseの予測は、科学コミュニティに無料で提供されています。EMBL-EBIとの協力により、研究者がより使いやすいようにするために、Ensembl Variant Effect Predictorを通じて利用可能にしています。

ミスセンス変異のルックアップテーブルに加えて、19,000以上のヒトタンパク質において、216億の単一アミノ酸配列置換の拡張予測を共有しました。また、各遺伝子の平均予測も含まれています。これは遺伝子の進化的制約を測定することと類似しており、その遺伝子が生物の生存にどれだけ必要かを示しています。

AlphaMissenseの予測がAlphaFoldの予測構造に重ねられた例(赤:病原性と予測されたもの、青:無害と予測されたもの、灰色:不確かなもの)。赤い点はClinVarデータベースの既知の病原性ミスセンス変異を表し、青い点は既知の無害な変異を表しています。左:HBBタンパク質。このタンパク質の変異は鎌状赤血球症を引き起こす可能性があります。右:CFTRタンパク質。このタンパク質の変異は嚢胞性線維症を引き起こす可能性があります。

遺伝子疾患の研究を加速する

この研究を具体化するための重要なステップは、科学コミュニティとの協力です。私たちはGenomics Englandとのパートナーシップを通じて、これらの予測が希少疾患の遺伝学の研究にどのように役立つかを探求してきました。Genomics EnglandはAlphaMissenseの結果を、以前に人間の参加者と集約された変異の病原性データと照合しました。彼らの評価により、私たちの予測が正確で一貫していることが確認され、AlphaMissenseに対する別の現実のベンチマークが提供されました。

私たちの予測は直接臨床で使用されることを意図していませんが、他の証拠と共に解釈する必要があります。この研究は、希少な遺伝性疾患の診断の改善や新しい疾患原因遺伝子の発見につながる可能性があります。

最終的には、AlphaMissenseを含む他のツールが、疾患をより良く理解し、新しい命を救う治療法の開発に貢献することを期待しています。

AlphaMissenseについてさらに詳しくはこちら:

Science誌での論文を読む:https://www.science.org/doi/10.1126/science.adg7492

Ensembl Variant Effect Predictorプラグインをダウンロードする:https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html

AlphaMissenseのコードをダウンロードする:https://github.com/deepmind/alphamissense

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

データサイエンティストとして成功するために必要なソフトスキル

データサイエンティストとしてのキャリアを構築する際には、ハードスキルにフォーカスすることが簡単です非線形カーネルを持...

機械学習

ユリーカに会ってください:大規模な言語モデルでパワードされた人間レベルの報酬設計アルゴリズム

大型言語モデル(LLM)は、高レベルの計画に優れていますが、ペン回しのような低レベルのタスクに対するサポートが必要です。...

AI研究

UCサンタクルーズの研究者たちは、概念や価値観間の暗黙的なステレオタイプと、画像内のそれらを定量化する画像対テキスト関連性テストツールを提案しています

UCサンタクルーズの研究チームが、Text to Image Association Testと呼ばれる画期的なツールを紹介しました。このツールは、T...

機械学習

「GoogleのDeblur AI:画像を鮮明にする」

私たちの絶え間なく進化するデジタル時代において、写真を通じて瞬間を捉え、共有することが私たちの生活の一部となっている...

AIニュース

「GoogleはニュースのためのAIを宣伝し、ジャーナリストは置き換えられないと主張する」

「テック巨人は、AIによるツールはニュース報道の重要な役割を果たすジャーナリストの代替とする意図はないと述べています」

AIニュース

AIサージ:Stability AIのCEOは、2年以内にインドの開発者に仕事の喪失を予測します

AIの革命が進む中、世界はその影響に関する潜在的な利益と懸念を目撃しています。AIブームの中で、Stability AIのCEOであるエ...