「超伝導デバイスは、コンピューティングや他のアプリケーションにおいてエネルギー使用量を劇的に削減することができる可能性があります」

超伝導デバイスは、エネルギー使用量を劇的に削減する可能性があります

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

超伝導デバイスの一つの設計では、ダイオードは超伝導薄膜(灰色)の上に強磁性ストリップ(ピンク)が配置されています。

マサチューセッツ工科大学の研究者によって開発されたシンプルな超伝導デバイスは、高出力計算システムのエネルギー使用量を大幅に削減し、量子コンピューティング技術を改善する可能性があります。

ナノスケールの長方形のダイオードはスケーラブルであり、シリコンウェハーの1枚に数百万個を生産することができます。

新しいダイオードは、研究者たちが彼らの研究で説明するように、メイスナー遮蔽効果として知られる現象を利用しています。彼らは直接的に、または隣接する強磁性層を通じて適用した微小な磁場は、外部磁場を排除し、超伝導性を維持するための材料の遮蔽電流メカニズムを活性化させます。

研究者たちはまた、デバイスのエッジの違いを最適化することにより、効率を20%から50%以上に向上させました。これにより、効率をさらに向上させるために「調整」できるエッジを持つデバイスを開発することが可能になるかもしれない、とマサチューセッツ工科大学のシニアリサーチサイエンティストであるジャガディーシュ・ムディラは述べています。

MITニュースからフル記事を読む

抄録の著作権は2023年スミスバックリン、ワシントンD.C.、アメリカ合衆国に帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

プログラム合成 - コードが自己書きすることを実現する

「プログラム合成」という言葉を聞いたことはあるかもしれませんが、完全に理解していないかもしれませんこれは、しばしばAI...

コンピュータサイエンス

「複雑性理論の50年間の知識の限界への旅」

「問題が解決が困難であることを証明するのはどれほど難しいのか」、メタ複雑性理論家は何十年もこのような質問をしてきまし...

機械学習

「低コスト四足ロボットはパルクールをマスターできるのか? アジャイルなロボット運動のための革命的な学習システムを公開する」

複雑な物理的タスク、例えば困難な環境でのナビゲーションなどをロボットに実行させるという課題は、ロボティクスにおいて長...

AIニュース

新技術による道路と橋の建設および修復のためのツール:人工知能

「ペンシルベニア州とその他の地域で、AIが国の老朽化したインフラに適用されていますそれは賢明な判断でしょうか?」

機械学習

「Nvidiaが革命的なAIチップを発表し、生成型AIアプリケーションを急速に強化する」

技術が常に限界を押し上げる時代において、Nvidiaは再びその名を刻みました。同社はGH200 Grace Hopper Superchipを発売しま...

AIニュース

科学者たちは、エイジ・オブ・エンパイアーズというコンピューターゲームを用いて、アリの戦争を再現しました

「科学者たちは、侵略的なアリの種を駆除するために、コンピューターゲーム「エイジ オブ エンパイア」を使用してアリの「戦...