「超伝導デバイスは、コンピューティングや他のアプリケーションにおいてエネルギー使用量を劇的に削減することができる可能性があります」

超伝導デバイスは、エネルギー使用量を劇的に削減する可能性があります

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

超伝導デバイスの一つの設計では、ダイオードは超伝導薄膜(灰色)の上に強磁性ストリップ(ピンク)が配置されています。

マサチューセッツ工科大学の研究者によって開発されたシンプルな超伝導デバイスは、高出力計算システムのエネルギー使用量を大幅に削減し、量子コンピューティング技術を改善する可能性があります。

ナノスケールの長方形のダイオードはスケーラブルであり、シリコンウェハーの1枚に数百万個を生産することができます。

新しいダイオードは、研究者たちが彼らの研究で説明するように、メイスナー遮蔽効果として知られる現象を利用しています。彼らは直接的に、または隣接する強磁性層を通じて適用した微小な磁場は、外部磁場を排除し、超伝導性を維持するための材料の遮蔽電流メカニズムを活性化させます。

研究者たちはまた、デバイスのエッジの違いを最適化することにより、効率を20%から50%以上に向上させました。これにより、効率をさらに向上させるために「調整」できるエッジを持つデバイスを開発することが可能になるかもしれない、とマサチューセッツ工科大学のシニアリサーチサイエンティストであるジャガディーシュ・ムディラは述べています。

MITニュースからフル記事を読む

抄録の著作権は2023年スミスバックリン、ワシントンD.C.、アメリカ合衆国に帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「アマゾンベッドロックを使った商品説明の自動生成」

今日の常に進化するeコマースの世界では、魅力的な製品の説明の影響は過小評価できませんそれは潜在的な訪問者を支払いをする...

AIニュース

「MITにおけるダイヤモンドの輝き:ネットワーキングを革命化する量子リピーター」

科学者たちは、今ではダイヤモンドの欠陥を活用して量子中継装置を構築しています

AI研究

香港大学和阿里巴巴集团的AI研究揭示了“LivePhoto”:文本控制的视频动画和动作强度定制的重大突破

香港大学、阿里巴巴集团、蚂蚁集团的研究人员开发了LivePhoto,以解决当前文本到视频生成研究中对时间运动的忽视问题。LivePh...

コンピュータサイエンス

「教師たちはAIチュータリングボットを試験にかける」

ニュージャージー州ニューアークの3つの公立学校では、教育非営利団体であるカーンアカデミーの人工知能(AI)支援教材のテス...

AIニュース

このAI論文は、「サブセンテンスエンコーダーを紹介します:テキストの細かい意味表現のための対照的に学習されたコンテクスト埋め込みAIモデル」という意味です

ペンシルベニア大学、ワシントン大学、テンセントAI Labの研究者は、サブセントエンコーダーを提案しています。これは対照的...

AIニュース

「Googleの検索ボックスは情報の意味を変えた」

ウェブ検索は疑問を解決すると約束されていましたしかし、それは真実のソフトな黙示録をもたらしました