「超伝導デバイスは、コンピューティングや他のアプリケーションにおいてエネルギー使用量を劇的に削減することができる可能性があります」

超伝導デバイスは、エネルギー使用量を劇的に削減する可能性があります

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

超伝導デバイスの一つの設計では、ダイオードは超伝導薄膜(灰色)の上に強磁性ストリップ(ピンク)が配置されています。

マサチューセッツ工科大学の研究者によって開発されたシンプルな超伝導デバイスは、高出力計算システムのエネルギー使用量を大幅に削減し、量子コンピューティング技術を改善する可能性があります。

ナノスケールの長方形のダイオードはスケーラブルであり、シリコンウェハーの1枚に数百万個を生産することができます。

新しいダイオードは、研究者たちが彼らの研究で説明するように、メイスナー遮蔽効果として知られる現象を利用しています。彼らは直接的に、または隣接する強磁性層を通じて適用した微小な磁場は、外部磁場を排除し、超伝導性を維持するための材料の遮蔽電流メカニズムを活性化させます。

研究者たちはまた、デバイスのエッジの違いを最適化することにより、効率を20%から50%以上に向上させました。これにより、効率をさらに向上させるために「調整」できるエッジを持つデバイスを開発することが可能になるかもしれない、とマサチューセッツ工科大学のシニアリサーチサイエンティストであるジャガディーシュ・ムディラは述べています。

MITニュースからフル記事を読む

抄録の著作権は2023年スミスバックリン、ワシントンD.C.、アメリカ合衆国に帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

機械学習信頼性の向上:異常性がモデルのパフォーマンスと不確実性の定量化を向上させる方法

オブジェクトがそのカテゴリーの他のアイテムに似ている場合、それは典型的と見なされます。例えば、ペンギンは普通でない鳥...

AI研究

天候の変化:AI、高速計算がより速く、効率的な予測を提供することを約束します

2050年までに、極端な天候や気候の頻度と厳しさが増すことにより、ミュンヘン再保険会社によれば、年間100万人の命が失われ、...

機械学習

AWSを使った生成AIを活用したクラウド上の新しい構築の時代へようこそ

「私たちは、時間の経過とともに、生成型AIが私たちが知るほぼすべての顧客エクスペリエンスを変革する可能性を持っていると...

機械学習

「目と耳を持つChatGPT:BuboGPTは、マルチモーダルLLMsにおいて視覚的なグラウンディングを可能にするAIアプローチです」

大規模言語モデル(LLM)は、自然言語処理の領域でゲームチェンジャーとして登場しました。彼らは私たちの日常生活の重要な一...

AI研究

スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています

ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプ...