表現の評価方法

表現評価方法

教師なしから教師ありメトリクスへ

credit: Image from unsplash.com

埋め込みとは、単語、ドキュメント、製品などの実体の密なベクトル表現のことです。これらは、意味的な意味を捉え、実体間の類似性を強調するために設計されています。良好な埋め込みセットは、実体の本質的な特徴を効率的にエンコードするだけでなく、コンパクトさ、意味のあるさ、およびさまざまなタスクにわたる堅牢性などの特性も示す必要があります。本記事では、埋め込みの品質を評価するためのさまざまな評価メトリクスについて調査します。さあ始めましょう。

評価フレームワーク

任意の評価フレームワークは、次の3つの主要なコンポーネントで構成されています:

  1. ベースラインメソッド:これは、新しいアプローチやモデルと比較するための基準として機能します。提案された手法のパフォーマンスを評価するための参照点を提供します。
  2. 評価メトリクスのセット:評価メトリクスは、モデルのパフォーマンスを評価するために使用される定量的な尺度です。これらのメトリクスは教師ありまたは教師なしであり、出力の成功がどのように評価されるかを定義します。
  3. 評価データセット:評価データセットは、モデルのパフォーマンスを評価するために使用されるラベル付き/注釈付きまたは未ラベル付きのデータのコレクションです。このデータセットは、モデルが処理することを期待される実世界のシナリオを代表する必要があります。包括的な評価を保証するために、さまざまな例をカバーする必要があります。

評価メトリクスがグラウンドトゥルーラベルを必要とするかどうかに基づいて、それらを教師なしメトリクスと教師ありメトリクスに分けることができます。実際の実践では、ラベルの収集は非常に高価ですので、教師なしメトリクスを使用する方が有利です。

以下では、最先端のメトリクスについて調査します。各メトリクスについて、評価と比較するためのベースラインメソッドを選択してください。ベースラインは、「ランダム埋め込みジェネレーター」など、単純なものでもかまいません!

教師あり評価メトリクス

教師ありメトリクスは、ラベル付きの評価データセットを必要とします。一般的な戦略は、分類器や回帰器などの予測モデルを選択することです。その後、限られたラベル付きデータセットを使用して予測モデルを訓練します…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「aiOlaのCEO兼共同創設者、アミール・ハラマティによるインタビューシリーズ」

アミール・ハラマティは、aiOlaのCEO兼共同創業者であり、スピーチを作業可能にし、どこでも完全な正確さで業界固有のプロセ...

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

データサイエンス

「David Smith、TheVentureCityの最高データオフィサー- インタビューシリーズ」

デビッド・スミス(別名「デビッド・データ」)は、TheVentureCityのチーフデータオフィサーであり、ソフトウェア駆動型のス...

人工知能

「トリントの創設者兼CEO、ジェフ・コフマンへのインタビューシリーズ」

ジェフ・コーフマンは、ABC、CBS、CBCニュースで30年のキャリアを持った後、Trintの創設者兼CEOとなりましたジェフは手作業の...

データサイエンス

「3つの質問:ロボットの認識とマッピングの研磨」

MIT LIDSのLuca CarloneさんとJonathan Howさんは、将来のロボットが環境をどのように知覚し、相互作用するかについて議論し...

データサイエンス

アステラソフトウェアのCOO、ジェイ・ミシュラ - インタビューシリーズ

ジェイ・ミシュラは、急速に成長しているエンタープライズ向けデータソリューションの提供企業であるAstera Softwareの最高執...