画像から主要な色を抽出するREST APIの作成とデプロイ

画像の主要な色を抽出するREST APIの作成とデプロイ

教師なし機械学習、FastAPI、およびDockerを使用する

Image by author.

目次

  1. 問題の設定
  2. 画像から色を抽出する
  3. プロジェクトの構造
  4. コード
  5. Dockerコンテナをデプロイする
  6. 試してみましょう!
  7. APIドキュメント
  8. 結論
  9. ライセンスの免責事項

1. 問題の設定

製造施設の制御室を想像してみましょう。ここでは、製造された製品を自動的に分類する必要があります。たとえば、製品の色に基づいて、製品はさまざまなローラーコンベアの支社にリダイレクトされ、さらなる処理や梱包が行われる可能性があります。

また、オンライン小売業者が、検索機能に色による検索機能を追加してユーザーエクスペリエンスを向上させようとしていると想像してみましょう。顧客は特定の色の衣料品をより簡単に見つけることができ、興味のある製品へのアクセスが簡素化されます。

また、筆者のようなITコンサルタントとして、入力画像からプレゼンテーション、グラフ、およびアプリのためのカラーパレットを生成するためのシンプルで高速かつ再利用可能なツールを実装すると想像してみることもできます。

これらは、画像から主要な色を抽出することが、操作効率の向上や顧客体験の向上にどのように寄与するかの一部の例です。

このブログ投稿では、Pythonを使用して、与えられた画像から主要な色を抽出する方法を実装します。そして、FastAPIとDockerを使用して、ソリューションをサービスとしてパッケージ化してデプロイします。

この投稿の目的は、ビジネス目的を達成するために機械学習技術を活用した軽量かつ自己完結型のサービスの展開について具体的なイラストを共有することです。このようなサービスは、マイクロサービスアーキテクチャに簡単に統合できます。

2. 画像から色を抽出する

デジタル画像は、本質的にはピクセルと呼ばれる個々のコンポーネントの2次元グリッドです。ピクセルは画像の表示の最小単位であり、その色に関する情報を持っています。A …

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...

人工知能

「コマンドバーの創設者兼CEO、ジェームズ・エバンスによるインタビューシリーズ」

ジェームズ・エバンズは、CommandBarの創設者兼CEOであり、製品、マーケティング、顧客チームを支援するために設計されたAIパ...

人工知能

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 - インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architecture...

人工知能

「リオール・ハキム、Hour Oneの共同創設者兼CTO - インタビューシリーズ」

「Hour Oneの共同創設者兼最高技術責任者であるリオール・ハキムは、専門的なビデオコミュニケーションのためのバーチャルヒ...

人工知能

ジョシュ・フィースト、CogitoのCEO兼共同創業者 - インタビューシリーズ

ジョシュ・フィーストは、CogitoのCEO兼共同創業者であり、感情と会話AIを組み合わせた革新的なプラットフォームを提供するエ...

人工知能

「aiOlaのCEO兼共同創設者、アミール・ハラマティによるインタビューシリーズ」

アミール・ハラマティは、aiOlaのCEO兼共同創業者であり、スピーチを作業可能にし、どこでも完全な正確さで業界固有のプロセ...