なぜ特徴スケーリングは機械学習において重要なのか?6つの特徴スケーリング技術についての議論

特徴スケーリングの重要性と6つの技術についての議論

標準化、正規化、ロバストスケーリング、平均正規化、最大絶対スケーリング、およびベクトルの単位長さのスケーリング

Photo by Mediamodifier on Unsplash

多くの機械学習アルゴリズムは、同じスケールで特徴を持つ必要があります。

さまざまなシナリオで選択できるさまざまな特徴スケーリング方法があります。これらには異なる(技術的な)名前があります。用語「特徴スケーリング」は、単にこれらの方法のいずれかを指します。

トピック------1. 異なるシナリオでの特徴スケーリング   a. PCA(主成分分析)における特徴スケーリング   b. k-meansにおける特徴スケーリング   c. KNNおよびSVMにおける特徴スケーリング   d. 線形モデルにおける特徴スケーリング   e. ニューラルネットワークにおける特徴スケーリング   f. 収束における特徴スケーリング   g. ツリーベースのアルゴリズムにおける特徴スケーリング   h. LDAにおける特徴スケーリング2. 特徴スケーリングの方法   a. 標準化   b. 最小-最大スケーリング(正規化)   c. ロバストスケーリング   d. 平均正規化   e. 最大絶対スケーリング   f. ベクトルの単位長さのスケーリング3. 特徴スケーリングとデータの分布4. 特徴スケーリング時のデータ漏洩5. 特徴スケーリング方法のまとめ

異なるシナリオでの特徴スケーリング

  • PCAにおける特徴スケーリング: 主成分分析では、PCAの成分は元の特徴の相対的な範囲に非常に敏感です。もし特徴が同じスケールで測定されていない場合、PCAはデータの分散を最大化する成分を選択しようとします。もしいくつかの特徴の範囲がより大きい場合、それらの特徴がPCAプロセスを支配する可能性があります。この場合、真の分散は成分によって捉えられないかもしれません。これを避けるためには、通常PCAの前に特徴スケーリングを行います。ただし、2つの例外があります。もし特徴間のスケールに有意差がない場合、例えば1つの特徴が0から1の範囲にあり、もう1つの特徴が0から1.2の範囲にある場合、特徴スケーリングは必要ありませんが、行っても問題ありません!相関行列を分解してPCAを実行する場合、特徴が同じスケールで測定されていなくても特徴スケーリングは必要ありません…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

Deep Learningのマスタリング:Piecewise推定による非線形近似の技術 パート2

皆さん、こんにちは!「マスタリング深層学習シリーズ」の第2回目へようこそこの記事は、第1回目の続編であり、タイトルは『...

データサイエンス

「OpenAIの信頼性と安全性の責任者が辞任:ChatGPTに与える影響は何ですか?」

OpenAIという先駆的な人工知能企業では、ChatGPTなどの革新的な技術により、世界に生成型AIを紹介しました。LinkedInでの最近...

人工知能

「先延ばしハック:ChatGPTを使ってプロジェクトをビデオゲームに変える」

「あなたのやるべきことリストを、ドーパミンが絶えず放出されるワクワクするビデオゲームに変えましょう」

機械学習

「DeepOntoに会ってください 深層学習を用いたオントロジーエンジニアリングのためのPythonパッケージ」

ディープラーニングの方法論の進歩は、人工知能コミュニティに大きな影響を与えています。優れたイノベーションと開発により...

機械学習

『トランスフォーマーの位置符号化の解説』

元のトランスフォーマーアーキテクチャでは、位置エンコーディングが入力と出力の埋め込みに追加されました位置エンコーディ...

AIニュース

「カスタムGPT-4チャットボットの作り方」

ダンテは、技術的な能力に関係なく、誰でも5分以内に専用のAIチャットボットを作成、トレーニング、展開できるようにします