「無人運転車は子供や肌の色の濃い人を見つけるのに苦労するかもしれません」

無人運転車は子供や肌の色の濃い人を見つけるのが難しいかもしれません

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

一部の歩行者はドライバーレスカーに対して他よりも信頼性が低いかもしれません。 ¶ クレジット:Dorothy Alexander/Alamy

イギリスと中国の科学者は、ドライバーレスカーの研究に使用される8つの人工知能(AI)ベースの歩行者検出器を評価し、子供や肌の色が濃い人を検出する際に困難があることがわかりました。

研究者たちは、これらの検出器の成人の正確性は、子供の場合に比べてほぼ20%高く、肌の色が薄い歩行者に比べて7.5%高いことを学びました。

イギリスのキングス・カレッジ・ロンドンのJie Zhangは、自動車メーカーのソフトウェアの詳細は機密であるが、通常は既存のオープンソースモデルに基づいていると述べ、「同様の問題を抱えているはずです」と述べました。

イギリスのオックスフォード大学のCarissa Vélizは、これらの問題は実際の道路でAIシステムを展開する前に修正されなければならないと述べましたが、エンジニアはその対策が全体的な安全性に意図的に悪影響を及ぼさないようにする必要があります。 New Scientistより全文を読む

抄録の著作権©2023 SmithBucklin、ワシントンD.C.、米国

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

MPT-7Bをご紹介します MosaicMLによってキュレーションされた1Tトークンのテキストとコードでトレーニングされた新しいオープンソースの大規模言語モデルです

MosaicMLは最近、予測分析と意思決定のアプローチを変革する画期的なツール、MPT-7Bを発表しました。この新しいツールは、最...

機械学習

ニューラルネットワークにおける系統的組み合わせ可能性の解除:組み合わせ可能性のためのメタラーニング(MLC)アプローチによるブレイクスルー

人工知能(Artificial Intelligence)と機械学習(Machine Learning)の分野はますます普及しています。これらの領域での主要...

機械学習

AIの未来を形作る ビジョン・ランゲージ・プリトレーニング・モデルの包括的な調査と、ユニモーダルおよびマルチモーダルタスクにおける役割

機械学習研究の最新リリースで、ビジョン言語事前学習(VLP)とその多様なタスクへの応用について、研究チームが深く掘り下げ...

機械学習

このAI論文は、RetNetとTransformerの融合であるRMTを紹介し、コンピュータビジョンの効率と精度の新しい時代を開拓しています

NLPにデビューした後、Transformerはコンピュータビジョンの領域に移され、特に効果的であることが証明されました。それに対...

データサイエンス

LangChain:LLMがあなたのコードとやり取りできるようにします

生成モデルは皆の注目を集めています現在、多くのAIアプリケーションでは、機械学習の専門家ではなく、API呼び出しの実装方法...

AI研究

中国のこのAI研究は、AIの幻覚を探求する:大型言語モデルにおける幻視に深く潜る

大型言語モデルは最近、自然言語処理におけるパラダイムの変化をもたらし、以前には考えられなかった言語の創造、理解、推論...