「無人運転車は子供や肌の色の濃い人を見つけるのに苦労するかもしれません」

無人運転車は子供や肌の色の濃い人を見つけるのが難しいかもしれません

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

一部の歩行者はドライバーレスカーに対して他よりも信頼性が低いかもしれません。 ¶ クレジット:Dorothy Alexander/Alamy

イギリスと中国の科学者は、ドライバーレスカーの研究に使用される8つの人工知能(AI)ベースの歩行者検出器を評価し、子供や肌の色が濃い人を検出する際に困難があることがわかりました。

研究者たちは、これらの検出器の成人の正確性は、子供の場合に比べてほぼ20%高く、肌の色が薄い歩行者に比べて7.5%高いことを学びました。

イギリスのキングス・カレッジ・ロンドンのJie Zhangは、自動車メーカーのソフトウェアの詳細は機密であるが、通常は既存のオープンソースモデルに基づいていると述べ、「同様の問題を抱えているはずです」と述べました。

イギリスのオックスフォード大学のCarissa Vélizは、これらの問題は実際の道路でAIシステムを展開する前に修正されなければならないと述べましたが、エンジニアはその対策が全体的な安全性に意図的に悪影響を及ぼさないようにする必要があります。 New Scientistより全文を読む

抄録の著作権©2023 SmithBucklin、ワシントンD.C.、米国

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「深層学習による遺伝子制御の解明:オルタナティブスプライシングの理解に向けた新たなAIアプローチ」

オルタナティブスプライシングは、遺伝子の制御において基本的なプロセスであり、単一の遺伝子が複数のmRNAバリアントと様々...

AI研究

ETHチューリッヒの研究者が、大規模な言語モデル(LLM)のプロンプティング能力を向上させるマシンラーニングフレームワークであるGoT(Graph of Thoughts)を紹介しました

人工知能(AI)は、大規模言語モデル(LLM)の使用が増えています。特に、Transformerアーキテクチャのデコーダーのみの設計...

AI研究

グーグルの研究者たちは、差分プライバシーを持つ機械学習システムの監査において、新たなシングルランアプローチを発表しました

差分プライバシー(DP)は、モデルの訓練に使用される個人データのプライバシーを保護するための機械学習のよく知られた技術...

機械学習

このAIニュースレターは、あなたが必要なすべてです#63

「AIの今週のハイライトでは、Large Language Models(LLM)の採用による西洋市場での収益成長のさらなる証拠と、新しいAIモ...

AI研究

Googleの研究者が新たな大規模言語モデルの能力向上に向けた『Universal Self-Consistency (USC)』を披露

複数の候補者から最も一貫性のある回答を選び出し、特に数理推論やコード生成などのタスクのパフォーマンスを向上させる問題...

人工知能

「プロンプトエンジニアリングの興亡:一時的な流行か未来か?」

この記事は、プロンプトエンジニアリングの概要について、その始まりから現在の状況までを提供しています