機械学習:中央化とスケーリングの目的を理解する

機械学習:中央化とスケーリングの目的を理解する' -> '機械学習:中央化とスケーリングの目的を理解する

変換器の使用(MinMaxScaler、StandardScaler、RobustScaler)

Scaling, Image by Flo on OpenSea

はじめに

この記事では、中央値とスケーリングの概念について紹介します。実世界のユースケースを使用して、データの中央化とスケール化の利点について説明します。

Scikit-Learnの準備ができたメソッドを使用して、単純な計算と説明に入ります。

技術的には、MinMaxScaler、StandardScaler、RobustScalerを比較します。これらは、前処理を容易にする変換器のメソッドの一部です。

最後に、データの中央化とスケーリングの目的を理解し、準備ができたScikit-Learnの変換器を使用できるようになります。

中央化とスケーリングとは?

概念の理解

スケーリングはデータを特定の範囲やスケールに変換し、中央化はデータポイントをシフトしてその平均がゼロになるようにします。以下に例を示します。

Image by Flo

データのスケーリングと中央化の効果が見られます。右側では、データが0周りに中央化され、短いスケール(X軸およびY軸)で表示されています。

利点

データの中央化とスケーリングにはいくつかの利点がありますが、スケーリングに関しては以下が重要です:

  • アルゴリズムのパフォーマンスの向上:距離を使用するK-Nearest Neighbors(KNN)やK-Meansなどのアルゴリズムは、データ間の距離に敏感です。データのスケールを縮小することで、パフォーマンスを向上させます。
  • 特徴量の正規化:データセットにスケールの異なる特徴量が含まれている場合、データのスケーリングにより、大きな値を持つ特徴量に過剰な重要性を与えることを避けることができます。
  • データの比較の改善:データのスケールが同じであるため、データの比較が容易になります。
  • 数値的な問題の防止:データのスケーリングにより、オーバーフローやアンダーフロー(数値が非常に小さいまたは大きい場合)などの問題を防ぐことができます。
  • 外れ値の影響の軽減

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「UnbodyとAppsmithを使って、10分でGoogle Meet AIアシスタントアプリを作る方法」

「ほぼコードなしで、Google Meetのビデオ録画を処理し、メモを作成し、アクションアイテムをキャプチャするAIのミーティング...

機械学習

「このAIニュースレターはあなたが必要とするもの全てです #69」

Googleは、MicrosoftやAdobeといった企業に続き、彼らが提供するAIサービスの利用者を知的財産権侵害に関する訴訟から保護す...

AIニュース

AIマニア:バブルがはじける方向に向かっているのか?

仮想通貨ブームの後、人工知能(AI)の世界はベンチャーキャピタリスト(VC)の関心の大きな急増を経験しました。しかし、仮...

人工知能

「AIオートメーションエージェンシーのリードを増やす方法(月間100件以上のミーティング)」

「顧客を見つけることは数のゲームであり、多くの時間を要しますAIにすべての困難な仕事を任せない限り」

AIニュース

「Google.orgの新しい助成金は、永久凍土の融解を追跡するのに役立ちます」

新たな500万ドルの助成金は、Woodwell Climate Research Centerが北極の永久凍土の解凍をほぼリアルタイムで追跡するのを支援...