機械学習:中央化とスケーリングの目的を理解する

機械学習:中央化とスケーリングの目的を理解する' -> '機械学習:中央化とスケーリングの目的を理解する

変換器の使用(MinMaxScaler、StandardScaler、RobustScaler)

Scaling, Image by Flo on OpenSea

はじめに

この記事では、中央値とスケーリングの概念について紹介します。実世界のユースケースを使用して、データの中央化とスケール化の利点について説明します。

Scikit-Learnの準備ができたメソッドを使用して、単純な計算と説明に入ります。

技術的には、MinMaxScaler、StandardScaler、RobustScalerを比較します。これらは、前処理を容易にする変換器のメソッドの一部です。

最後に、データの中央化とスケーリングの目的を理解し、準備ができたScikit-Learnの変換器を使用できるようになります。

中央化とスケーリングとは?

概念の理解

スケーリングはデータを特定の範囲やスケールに変換し、中央化はデータポイントをシフトしてその平均がゼロになるようにします。以下に例を示します。

Image by Flo

データのスケーリングと中央化の効果が見られます。右側では、データが0周りに中央化され、短いスケール(X軸およびY軸)で表示されています。

利点

データの中央化とスケーリングにはいくつかの利点がありますが、スケーリングに関しては以下が重要です:

  • アルゴリズムのパフォーマンスの向上:距離を使用するK-Nearest Neighbors(KNN)やK-Meansなどのアルゴリズムは、データ間の距離に敏感です。データのスケールを縮小することで、パフォーマンスを向上させます。
  • 特徴量の正規化:データセットにスケールの異なる特徴量が含まれている場合、データのスケーリングにより、大きな値を持つ特徴量に過剰な重要性を与えることを避けることができます。
  • データの比較の改善:データのスケールが同じであるため、データの比較が容易になります。
  • 数値的な問題の防止:データのスケーリングにより、オーバーフローやアンダーフロー(数値が非常に小さいまたは大きい場合)などの問題を防ぐことができます。
  • 外れ値の影響の軽減

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「メタのMusicGenを使用してColabで音楽を生成する」

「ColabでMusicGenをセットアップする方法を学びましょうこの先進のテキストから音楽へ変換するモデルは、人工知能アルゴリズ...

人工知能

PaaS4GenAI Oracle Integration CloudからIBM Cloudプラットフォーム上のGenerative AI (WatsonX)との接続

「オラクル統合クラウドとIBMクラウドプラットフォーム上のGenerative AI WatsonXを活用したマルチクラウド接続のソリューシ...

データサイエンス

「GATE DA 2024のサンプル問題集」

導入 GATE 2024の志望者の皆さん、素晴らしいニュースです!インド科学研究所(IISc)が、今後のGATE試験のためのサンプル問...

AI研究

『このAI研究は、IFPおよびリポソーム蓄積を予測するための物理ベースの深層学習を発表します』

がん治療の精緻化を追求する中、研究者たちは、腫瘍のダイナミクスを飛躍的に向上させる画期的な解決策を導入しました。この...

AI研究

ジェン AI for the Genome LLM は COVID バリアントの特徴を予測します

広く高く評価されている大規模な言語モデルであるGenSLMsは、COVID-19の原因であるSARS-CoV-2の現実世界の変異体に酷似した遺...

AIニュース

ChatGPTによって発明された10の感情(驚くほど共感できる)

ChatGPTは、私たち人間が感じる複雑な感情の配列を捉え、それに対して新しい言葉を作り出すことにおいて、巧みな能力を持って...