機械学習:中央化とスケーリングの目的を理解する

機械学習:中央化とスケーリングの目的を理解する' -> '機械学習:中央化とスケーリングの目的を理解する

変換器の使用(MinMaxScaler、StandardScaler、RobustScaler)

Scaling, Image by Flo on OpenSea

はじめに

この記事では、中央値とスケーリングの概念について紹介します。実世界のユースケースを使用して、データの中央化とスケール化の利点について説明します。

Scikit-Learnの準備ができたメソッドを使用して、単純な計算と説明に入ります。

技術的には、MinMaxScaler、StandardScaler、RobustScalerを比較します。これらは、前処理を容易にする変換器のメソッドの一部です。

最後に、データの中央化とスケーリングの目的を理解し、準備ができたScikit-Learnの変換器を使用できるようになります。

中央化とスケーリングとは?

概念の理解

スケーリングはデータを特定の範囲やスケールに変換し、中央化はデータポイントをシフトしてその平均がゼロになるようにします。以下に例を示します。

Image by Flo

データのスケーリングと中央化の効果が見られます。右側では、データが0周りに中央化され、短いスケール(X軸およびY軸)で表示されています。

利点

データの中央化とスケーリングにはいくつかの利点がありますが、スケーリングに関しては以下が重要です:

  • アルゴリズムのパフォーマンスの向上:距離を使用するK-Nearest Neighbors(KNN)やK-Meansなどのアルゴリズムは、データ間の距離に敏感です。データのスケールを縮小することで、パフォーマンスを向上させます。
  • 特徴量の正規化:データセットにスケールの異なる特徴量が含まれている場合、データのスケーリングにより、大きな値を持つ特徴量に過剰な重要性を与えることを避けることができます。
  • データの比較の改善:データのスケールが同じであるため、データの比較が容易になります。
  • 数値的な問題の防止:データのスケーリングにより、オーバーフローやアンダーフロー(数値が非常に小さいまたは大きい場合)などの問題を防ぐことができます。
  • 外れ値の影響の軽減

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

データセットシフトのフレームワークを整理する

私たちはモデルを訓練し、それらを使用して特定の結果を予測します入力のセットが与えられた場合に、それが機械学習のゲーム...

人工知能

Taplio LinkedInの成長に最適なAIツール

Taplioは、LinkedIn上で個人ブランドを成長させるのをサポートするために設計されたAIツールです

機械学習

このAI論文は、深層学習を用いて大規模な記録の神経活動を解読する人工知能フレームワーク、POYO-1を紹介しています

ジョージア工科大学、Mila、モントリオール大学、マギル大学の研究者らは、多様な大規模な神経記録を横断的にモデリングする...

AI研究

シンガポール国立大学の研究者たちは、ピクセルベースと潜在ベースのVDMを結びつけたハイブリッド人工知能モデルであるShow-1を提案しますこれはテキストからビデオを生成するものです

シンガポール国立大学の研究者たちは、Show-1というハイブリッドモデルを導入しました。テキストからビデオを生成するための...

データサイエンス

「ベクターデータベースは、生成型AIソリューションの未来をどのように形作るのか?」

紹介 生成AIの急速に進化する風景において、ベクトルデータベースの重要な役割がますます明らかになってきました。本記事では...

機械学習

赤い猫&アテナAIは夜間視認能力を備えた知能化軍用ドローンを製造する

軍事技術のリーディングカンパニーであるRed Cat Holdings, Inc.は、Athena AIとのパートナーシップにおいて、Teal 2の人工知...