専門家モデルを用いた機械学習:入門

機械学習の専門家モデル入門

数十年前のアイデアが今日、途方もなく大きなニューラルネットワークのトレーニングを可能にする方法

(Pexels)

エキスパートモデルは、機械学習において最も有用な発明の一つですが、それほど十分に注目されていません。実際、エキスパートモデリングは、単に「途方もなく大きい」ニューラルネットワークをトレーニングすることができるだけでなく(後で詳しく説明します)、人間の脳のように学習するモデルを構築することも可能です。すなわち、異なる領域が異なるタイプの入力に特化して学習することができます。

この記事では、エキスパートモデリングの主要なイノベーションを紹介し、最近のブレークスルーであるSwitch TransformerやExpert Choice Routingアルゴリズムなどにつながる要素を見ていきます。しかし、まずはすべての始まりである「Mixtures of Experts」という論文に戻りましょう。

Mixtures of Experts(1991年)

The original MoE model from 1991. Image credit: Jabocs et al 1991, Adaptive Mixtures of Local Experts.

エキスパートの混合(MoE)のアイデアは、AIの神様として知られるジェフリー・ヒントンを含む共著者によって3年以上前にさかのぼります。MoEの中心的なアイデアは、出力「y」を「エキスパート」Eの組み合わせによってモデル化し、各エキスパートの重みを「ゲーティングネットワーク」Gが制御することです。

この文脈でのエキスパートは、どのような種類のモデルでも構いませんが、通常は多層ニューラルネットワークが選ばれ、ゲーティングネットワークは

ここで、Wは学習可能な行列であり、トレーニング例をエキスパートに割り当てます。MoEモデルのトレーニングでは、学習目標は次の2つです:

  1. エキスパートは、与えられた出力を最適な出力(つまり、予測)に処理するように学習します。
  2. ゲーティングネットワークは、ルーティング行列Wを共同で学習することにより、正しいトレーニング例を正しいエキスパートに「ルーティング」することを学習します。

では、なぜこれを行う必要があるのでしょうか?そして、なぜこれが機能するのでしょうか?大まかなレベルで、このアプローチを使用する主な動機は3つあります:

まず第一に、MoEはモデルのスパース性により、ニューラルネットワークを非常に大きなサイズまでスケーリングすることが可能です。つまり、全体的なモデルは大きいですが、実際に利用されるのはごく一部の…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ビジネスを成長させるための50のChatGPTプロンプト」

ビジネスで成功するのは難しいですもしChatGPTの使い方を学ばないなら、さらに困難になるでしょう

AIテクノロジー

世界のトップ10の生成AI企業

イントロダクション 人工知能(AI)は、ビジネスの働き方を変革する力を持つ強力なテクノロジーです。AIの素晴らしい側面の一...

データサイエンス

「エンタープライズAIの処理のための表現能力を向上させる鍵は、RAG + ファインチューニングです以下にその理由を説明します」

「ジェネレーティブAIはほとんどのCEOの頭にありますが、そのエンタープライズへの適応方法は議論の余地がありますその成功の...

AIニュース

ChatGPTによって発明された10の感情(驚くほど共感できる)

ChatGPTは、私たち人間が感じる複雑な感情の配列を捉え、それに対して新しい言葉を作り出すことにおいて、巧みな能力を持って...

AI研究

UCバークレーの研究者たちは、「リングアテンション:トランスフォーマーのメモリ要件を削減するためのメモリ効率の良い人工知能アプローチ」という提案を行っています

ディープラーニングモデルアーキテクチャの一種であるTransformerは、多くの最先端のAIモデルの文脈で使われます。これらは人...

AIニュース

世界初のAI搭載アーム:知っておくべきすべて

人工知能がバイオニックアームを制御する世界を想像したことがありますか? スーパーヒーローの映画から出てきたコンセプトの...