専門家モデルを用いた機械学習:入門

機械学習の専門家モデル入門

数十年前のアイデアが今日、途方もなく大きなニューラルネットワークのトレーニングを可能にする方法

(Pexels)

エキスパートモデルは、機械学習において最も有用な発明の一つですが、それほど十分に注目されていません。実際、エキスパートモデリングは、単に「途方もなく大きい」ニューラルネットワークをトレーニングすることができるだけでなく(後で詳しく説明します)、人間の脳のように学習するモデルを構築することも可能です。すなわち、異なる領域が異なるタイプの入力に特化して学習することができます。

この記事では、エキスパートモデリングの主要なイノベーションを紹介し、最近のブレークスルーであるSwitch TransformerやExpert Choice Routingアルゴリズムなどにつながる要素を見ていきます。しかし、まずはすべての始まりである「Mixtures of Experts」という論文に戻りましょう。

Mixtures of Experts(1991年)

The original MoE model from 1991. Image credit: Jabocs et al 1991, Adaptive Mixtures of Local Experts.

エキスパートの混合(MoE)のアイデアは、AIの神様として知られるジェフリー・ヒントンを含む共著者によって3年以上前にさかのぼります。MoEの中心的なアイデアは、出力「y」を「エキスパート」Eの組み合わせによってモデル化し、各エキスパートの重みを「ゲーティングネットワーク」Gが制御することです。

この文脈でのエキスパートは、どのような種類のモデルでも構いませんが、通常は多層ニューラルネットワークが選ばれ、ゲーティングネットワークは

ここで、Wは学習可能な行列であり、トレーニング例をエキスパートに割り当てます。MoEモデルのトレーニングでは、学習目標は次の2つです:

  1. エキスパートは、与えられた出力を最適な出力(つまり、予測)に処理するように学習します。
  2. ゲーティングネットワークは、ルーティング行列Wを共同で学習することにより、正しいトレーニング例を正しいエキスパートに「ルーティング」することを学習します。

では、なぜこれを行う必要があるのでしょうか?そして、なぜこれが機能するのでしょうか?大まかなレベルで、このアプローチを使用する主な動機は3つあります:

まず第一に、MoEはモデルのスパース性により、ニューラルネットワークを非常に大きなサイズまでスケーリングすることが可能です。つまり、全体的なモデルは大きいですが、実際に利用されるのはごく一部の…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

ジュネーブ大学の研究者は、多剤耐性(MDR)腸内細菌感染の入院リスクを予測するためのグラフベースの機械学習モデルを調査しています

マシンラーニングは、医療で非常に重要なツールとして登場し、業界のさまざまな側面を革新しています。その主な応用の一つは...

人工知能

「AIオートメーションエージェンシーのリードを増やす方法(月間100件以上のミーティング)」

「顧客を見つけることは数のゲームであり、多くの時間を要しますAIにすべての困難な仕事を任せない限り」

人工知能

「仕事を守るために自動化を避ける」

自動化は怖いです私のキャリアの最初のころ、私は何かを自動化しましたが、私が去ればすぐに廃止されました人々は仕事を失う...

データサイエンス

データから洞察力へ:KubernetesによるAI/MLの活用

「KubernetesがAI/MLと連携することで、AI/MLのワークロードに対して細粒度の制御、セキュリティ、弾力性を提供する方法を発...

機械学習

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を...

コンピュータサイエンス

ゼロトラストから安全なアクセスへ:クラウドセキュリティの進化

この記事では、クラウドセキュリティの進化、ゼロトラストの採用、ベストプラクティス、そしてAIの将来的な影響に焦点を当て...