機械学習の革新により、コンピュータの電力使用量が削減されています

機械学習により、コンピュータの電力使用量が削減されています

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_print { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_print:hover { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.mobile-apps { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #FFF; background-size: 10px; } .fav_bar a.mobile-apps:hover { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #e6e9ea; background-size: 10px} .fav_bar a.fav_de { background: url(/images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(/images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

ワシントン州立大学のPartha Pandeは述べています。「私たちは、電圧と周波数レベルを決定するためにより良い意思決定ができましたので、パフォーマンスを犠牲にすることなく大幅なエネルギー削減を実現しました。」¶ クレジット:WSU Insider

ワシントン州立大学(WSU)とインテルの研究者によって開発された機械学習フレームワークは、マルチコアコンピュータプロセッサの電力使用を管理してエネルギー消費を削減することができます。

研究者は、64コアプロセッサの異なるクラスタのための電圧と周波数レベルを選択するアルゴリズムを設計しました。

スケーラブルなフレームワークは、マルチプロセッサのパフォーマンスを低下させることなく、電力管理を最適化することを学習し、最大60%のエネルギー削減を実現しました。

WSUのJana Doppaは、このイノベーションは最大1,000コアプロセッサを持つ将来のコンピューティングシステム向けに設計されていると述べていますが、非常に小さな組み込みシステムにも使用することができます。 WSU Insiderからの全文記事を表示する

要約著作権©2023 SmithBucklin、ワシントンDC、アメリカ

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

データから洞察へ:データ分析のための生成AIの活用

「生成AIはデータ分析を革新し、生成AIのデータ分析への影響を探求し、組織が情報に基づいた意思決定にデータを活用する方法...

AI研究

アマゾンの研究者がフォーチュナを紹介:ディープラーニングにおける不確実性量子化のためのAIライブラリ

人工知能と機械学習の最近の発展は、皆の生活をより容易にしてくれています。その信じられない能力により、AIとMLはあらゆる...

機械学習

「物理学と流体力学に応用されたディープラーニング」

数値シミュレーションは、物理システムの挙動を理解するために何年も使用されてきました流体が構造物と相互作用する方法、応...

機械学習

「NVIDIA BioNeMoがAWS上での薬剤探索のための生成型AIを可能にする」

主要な製薬会社やテクバイオ企業の研究者や開発者は、Amazon Web Servicesを通じてNVIDIA Claraソフトウェアとサービスを簡単...

AI研究

シリコンボレー:デザイナーがチップ支援のために生成AIを活用

今日公開された研究論文によれば、生成AIは、最も複雑なエンジニアリングプロジェクトの1つである半導体設計を支援できる方法...

機械学習

大規模言語モデル(LLM)と潜在ディリクレ配分(LDA)アルゴリズムを用いたドキュメントのトピック抽出

「私は、1000ページ以上の大きなドキュメントを処理することができるPDFファイルとのチャット用のウェブアプリケーションを開...