機械学習の革新により、コンピュータの電力使用量が削減されています

機械学習により、コンピュータの電力使用量が削減されています

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_print { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_print:hover { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.mobile-apps { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #FFF; background-size: 10px; } .fav_bar a.mobile-apps:hover { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #e6e9ea; background-size: 10px} .fav_bar a.fav_de { background: url(/images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(/images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

ワシントン州立大学のPartha Pandeは述べています。「私たちは、電圧と周波数レベルを決定するためにより良い意思決定ができましたので、パフォーマンスを犠牲にすることなく大幅なエネルギー削減を実現しました。」¶ クレジット:WSU Insider

ワシントン州立大学(WSU)とインテルの研究者によって開発された機械学習フレームワークは、マルチコアコンピュータプロセッサの電力使用を管理してエネルギー消費を削減することができます。

研究者は、64コアプロセッサの異なるクラスタのための電圧と周波数レベルを選択するアルゴリズムを設計しました。

スケーラブルなフレームワークは、マルチプロセッサのパフォーマンスを低下させることなく、電力管理を最適化することを学習し、最大60%のエネルギー削減を実現しました。

WSUのJana Doppaは、このイノベーションは最大1,000コアプロセッサを持つ将来のコンピューティングシステム向けに設計されていると述べていますが、非常に小さな組み込みシステムにも使用することができます。 WSU Insiderからの全文記事を表示する

要約著作権©2023 SmithBucklin、ワシントンDC、アメリカ

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

大規模展開向けのモデル量子化に深く掘り下げる

イントロダクション AIにおいて、大規模なモデルをクラウド環境に展開するという2つの異なる課題が浮かび上がっています。こ...

人工知能

「Oktaの顧客アイデンティティで優れたデジタル体験を提供し、新たな価値を開放しましょう」

オクターの顧客アイデンティティへのビジョンは、ユーザーが迅速に革新し、シームレスなスケールを実現し、あらゆるデジタル...

人工知能

ミッドジャーニープロンプトのTシャツデザイン

Tシャツビジネス帝国を築きたい場合は、Midjourneyは美しいTシャツデザインを作成するための素晴らしいツールです

機械学習

『周期的な時間特徴のエンコード方法』

多くの予測タスクでは、モデルの入力として時間情報が必要です小売会社のレモネードの売上を予測するための回帰モデルを考え...

AIニュース

フォートペック族のメンバーとグーグラーが集まり、社会的な利益をもたらす技術について学び、祝福し、支援するために出会います

「責任あるイノベーションに重点を置くGoogleチームが、モンタナ州のフォートペック族を訪れ、関係構築と双方向の学びを行い...

機械学習

トランスフォーマーにおけるセルフアテンション

「初心者にやさしいセルフアテンションガイドセルフアテンションは、AIの現在の進歩の中で鍵となる「トランスフォーマー」の...