機械学習なしで最初の自動修正を作成する

機械学習なしで自動修正を作成する

独自のスペルチェッカーを構築するためのステップバイステップガイド

Photo by Markus Spiske on Unsplash

スペルの修正はどこにでもあります。私がこの記事を書いている間、Grammarlyは静かにタイプミスを修正してくれています。電子商取引のウェブサイトにクエリを入力すると、まず正しいフレーズに移動して、希望する商品のタイトルとより良く一致させます。

スペルの修正は、書かれたコミュニケーションにおいて間違いなく重要です。コミュニケーションを向上させ、専門性を保ち、生産性を向上させます。スペルチェッカーを構築することを考えると、一つの大きな解決策が浮かび上がってくるかもしれません:ディープラーニング。しかし、ディープラーニングは必ずしも最適な選択肢ではありません。

この記事では、スペル修正のための古典的な技術である「ノイズチャネル」と、ディープラーニングのバックグラウンドを必要としない修正モジュールを構築する方法を紹介します。

ノイズチャネル

私たちは、文書内のすべての単語がある種の「歪み」を受けたノイズチャネルを通過したと考えることができます。私たちは、「デコーダーチャネル」と呼ばれる「歪み」を元に戻すことができるチャネルを学習することを目指しています。

スペルミスの修正には、すべての可能な修正候補を収集し、デコーダーチャネルを通過させて、最も尤度の高い候補を見つけることができます。

Noisy channel and Decoder channel (Image by the author)

機械学習アプローチと比較して、ノイズチャネルは以下の理由からはじめるにはより好ましいと考えています:

  • コスト効率:ディープモデルを構築および維持する必要はありません。ディープラーニングモデルを構築、提供、および維持するリソースを持っているのは一部の人だけです。
  • ホワイトボックス:ノイズチャネルはより解釈可能です。スペルチェッカーから予期しない動作がある場合、スコアをより小さな要素に分解し、問題の発生源を特定することができます。したがって、適切な最適化を行うことができます(例:辞書の拡張、ハイパーパラメータの調整など)。

ただし、アプリケーションのリソースが増えるにつれて、seq2seqなどのディープモデルがより良い選択肢になります:

  • ノイズチャネルには不足がある

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「イギリスの全ての人に無料のAIトレーニングを提供しています」

「ジョニー・コットムは、一人でスタートアップを運営する際に必要なジャグリングの技術を知っています昨年、エコフレンドリ...

人工知能

「C# で GPT(一般目的テンプレート)を拡張しましょう」

この記事では、OpenAIを使用してGPTを作成し、AINIRO.IO Magic Cloudを使用して独自のC#コードで拡張する方法を示しています

データサイエンス

「衛星データ、山火事、そしてAI:気候の課題に立ち向かうワイン産業の保護」

「オーストラリアは、世界で5番目に大きなワイン輸出国としてランク付けされており、ワインの世界で重要な位置を占めています...

機械学習

マルチクエリアテンションの解説

マルチクエリアテンション(MQA)は、モデルのパフォーマンスを保証しながら、デコーダ内のトークン生成の速度を加速すること...

AI研究

「この新しいAI研究は、事前学習されたタンパク質言語モデルを幾何学的深層学習ネットワークに統合することで、タンパク質構造解析を進化させます」

科学的な探求には、魅力的で複雑な構造を持つタンパク質による魅力的で不思議な方法で重要な生物学的プロセスを支配する分子...

データサイエンス

情報とエントロピー

1948年、数学者のクロード・E・シャノンが「通信の数学的理論」という記事を発表し、機械学習における重要な概念であるエント...