機械学習なしで最初の自動修正を作成する

機械学習なしで自動修正を作成する

独自のスペルチェッカーを構築するためのステップバイステップガイド

Photo by Markus Spiske on Unsplash

スペルの修正はどこにでもあります。私がこの記事を書いている間、Grammarlyは静かにタイプミスを修正してくれています。電子商取引のウェブサイトにクエリを入力すると、まず正しいフレーズに移動して、希望する商品のタイトルとより良く一致させます。

スペルの修正は、書かれたコミュニケーションにおいて間違いなく重要です。コミュニケーションを向上させ、専門性を保ち、生産性を向上させます。スペルチェッカーを構築することを考えると、一つの大きな解決策が浮かび上がってくるかもしれません:ディープラーニング。しかし、ディープラーニングは必ずしも最適な選択肢ではありません。

この記事では、スペル修正のための古典的な技術である「ノイズチャネル」と、ディープラーニングのバックグラウンドを必要としない修正モジュールを構築する方法を紹介します。

ノイズチャネル

私たちは、文書内のすべての単語がある種の「歪み」を受けたノイズチャネルを通過したと考えることができます。私たちは、「デコーダーチャネル」と呼ばれる「歪み」を元に戻すことができるチャネルを学習することを目指しています。

スペルミスの修正には、すべての可能な修正候補を収集し、デコーダーチャネルを通過させて、最も尤度の高い候補を見つけることができます。

Noisy channel and Decoder channel (Image by the author)

機械学習アプローチと比較して、ノイズチャネルは以下の理由からはじめるにはより好ましいと考えています:

  • コスト効率:ディープモデルを構築および維持する必要はありません。ディープラーニングモデルを構築、提供、および維持するリソースを持っているのは一部の人だけです。
  • ホワイトボックス:ノイズチャネルはより解釈可能です。スペルチェッカーから予期しない動作がある場合、スコアをより小さな要素に分解し、問題の発生源を特定することができます。したがって、適切な最適化を行うことができます(例:辞書の拡張、ハイパーパラメータの調整など)。

ただし、アプリケーションのリソースが増えるにつれて、seq2seqなどのディープモデルがより良い選択肢になります:

  • ノイズチャネルには不足がある

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Appleが『AppleGPT』チャットボットを使った生成AI競争に参入」

テック大手のAppleは、大いに期待されているAI搭載チャットボット「AppleGPT」という仮の名前で進んでいます。この革新的なプ...

人工知能

なぜ包括的な画像セットが私たちにより良い製品作りを助けるのか

「私たちは、より包括的な製品を構築するために、株式画像会社であるTONLと協力して、より代表的なデータセットを作成しました」

データサイエンス

「もし私たちが複雑過ぎるモデルを簡単に説明できるとしたらどうだろう?」

この記事は次の記事に基づいています:https//www.sciencedirect.com/science/article/abs/pii/S0377221723006598 これを読ん...

人工知能

「AIディープフェイクの作り方(初心者向け)」

「AIディープフェイクを作るには、いくつかの技術的なスキルが必要でした...それが、Refaceという便利なツールが登場するまで...

AI研究

Google DeepMindの研究者がSynJaxを紹介:JAX構造化確率分布のためのディープラーニングライブラリ

データは、その構成要素がどのように組み合わさって全体を形成するかを説明するさまざまな領域で構造を持っていると見なすこ...

機械学習

「MosaicMLは、AIユーザーが精度を向上し、コストを削減し、時間を節約するのを支援します」

スタートアップのMosaicMLは、大規模なAIモデルの簡単なトレーニングと展開のためのツールを提供することにより、AIコミュニ...