「あなたの分類モデルにとって有害な特徴はどれですか?」

有害な特徴は何ですか?

分類器の特徴量のエラー寄与を計算し、モデルの理解と改善を目指す方法

[著者によるイメージ]

特徴重要度は、機械学習モデルの説明に最も一般的に使用されるツールです。それほど人気がありますので、多くのデータサイエンティストが特徴重要度と特徴の良さを同義と考えるようになります。

しかし、それは正しくありません。

特徴が重要であるとは、単にモデルがトレーニングセットで有用と判断したことを意味します。しかし、これは新しいデータで一般化する能力について何も言っていません!

この点を考慮するために、2つの概念の区別が必要です:

  • 予測寄与:変数がモデルによって行われる予測において持つ重み。これはモデルがトレーニングセットで見つけたパターンによって決まります。これは特徴重要度と同等です。
  • エラー寄与:モデルがホールドアウトデータセットで犯すエラーにおいて変数が持つ重み。これは新しいデータにおける特徴の性能のより良い代理となります。

この記事では、分類モデルにおけるこれら2つの量の計算の背後にあるロジックを説明します。また、予測寄与を使用するよりもエラー寄与を使用した場合に、特徴選択においてはるかに良い結果が得られる例も示します。

分類ではなく回帰に興味がある場合は、「あなたの特徴は重要ですか?それは彼らが良いことを意味するわけではありません」という私の以前の記事を読んでください。

目次

  1. おもちゃの例から始める
  2. 分類モデルにどの「エラー」を使用すべきか?
  3. 分類モデルでSHAP値をどのように管理すべきか?
  4. 「予測寄与」の計算
  5. 「エラー寄与」の計算
  6. 実際のデータセットの例
  7. それが機能することを証明する:「エラー寄与」を使用した再帰的特徴削除
  8. 結論

1. おもちゃの例から始める

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

データサイエンス

「David Smith、TheVentureCityの最高データオフィサー- インタビューシリーズ」

デビッド・スミス(別名「デビッド・データ」)は、TheVentureCityのチーフデータオフィサーであり、ソフトウェア駆動型のス...

データサイエンス

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成...

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

データサイエンス

2023年にAmazonのデータサイエンティストになる方法は?

ほとんどのビジネスは現在、膨大な量のデータを生成し、編集し、管理しています。しかし、ほとんどのビジネスは、収集したデ...

人工知能

「ナレ・ヴァンダニャン、Ntropyの共同創設者兼CEO- インタビューシリーズ」

Ntropyの共同創設者兼CEOであるナレ・ヴァンダニアンは、開発者が100ミリ秒未満で超人的な精度で金融取引を解析することを可...