「あなたの分類モデルにとって有害な特徴はどれですか?」

有害な特徴は何ですか?

分類器の特徴量のエラー寄与を計算し、モデルの理解と改善を目指す方法

[著者によるイメージ]

特徴重要度は、機械学習モデルの説明に最も一般的に使用されるツールです。それほど人気がありますので、多くのデータサイエンティストが特徴重要度と特徴の良さを同義と考えるようになります。

しかし、それは正しくありません。

特徴が重要であるとは、単にモデルがトレーニングセットで有用と判断したことを意味します。しかし、これは新しいデータで一般化する能力について何も言っていません!

この点を考慮するために、2つの概念の区別が必要です:

  • 予測寄与:変数がモデルによって行われる予測において持つ重み。これはモデルがトレーニングセットで見つけたパターンによって決まります。これは特徴重要度と同等です。
  • エラー寄与:モデルがホールドアウトデータセットで犯すエラーにおいて変数が持つ重み。これは新しいデータにおける特徴の性能のより良い代理となります。

この記事では、分類モデルにおけるこれら2つの量の計算の背後にあるロジックを説明します。また、予測寄与を使用するよりもエラー寄与を使用した場合に、特徴選択においてはるかに良い結果が得られる例も示します。

分類ではなく回帰に興味がある場合は、「あなたの特徴は重要ですか?それは彼らが良いことを意味するわけではありません」という私の以前の記事を読んでください。

目次

  1. おもちゃの例から始める
  2. 分類モデルにどの「エラー」を使用すべきか?
  3. 分類モデルでSHAP値をどのように管理すべきか?
  4. 「予測寄与」の計算
  5. 「エラー寄与」の計算
  6. 実際のデータセットの例
  7. それが機能することを証明する:「エラー寄与」を使用した再帰的特徴削除
  8. 結論

1. おもちゃの例から始める

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

スコット・スティーブンソン、スペルブックの共同創設者兼CEO- インタビューシリーズ

スコット・スティーブンソンは、Spellbookの共同創設者兼CEOであり、OpenAIのGPT-4および他の大規模な言語モデル(LLM)に基...

人工知能

「ナレ・ヴァンダニャン、Ntropyの共同創設者兼CEO- インタビューシリーズ」

Ntropyの共同創設者兼CEOであるナレ・ヴァンダニアンは、開発者が100ミリ秒未満で超人的な精度で金融取引を解析することを可...

人工知能

「トリントの創設者兼CEO、ジェフ・コフマンへのインタビューシリーズ」

ジェフ・コーフマンは、ABC、CBS、CBCニュースで30年のキャリアを持った後、Trintの創設者兼CEOとなりましたジェフは手作業の...

機械学習

「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」

『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフ...

人工知能

エンテラソリューションズの創設者兼CEO、スティーブン・デアンジェリス- インタビューシリーズ

スティーブン・デアンジェリスは、エンタラソリューションズの創設者兼CEOであり、自律的な意思決定科学(ADS®)技術を用いて...

人工知能

「クリス・サレンス氏、CentralReachのCEO - インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクラ...