新たな人工知能の研究が、言語モデルの中でマルチモーダルな連鎖思考推論を提案し、ScienceQAにおいてGPT-3.5を16%上回る結果を示しました(75.17% → 91.68%)

新たな人工知能の研究は、マルチモーダルな連鎖思考推論を提案し、GPT-3.5の結果を16%上回りました(91.68%)

最近の技術の進展により、大規模言語モデル(LLM)は複雑で洗練された推論タスクで非常に優れた成績を収めています。これは、デモンストレーションのプロンプトに対して中間の推論ステップを生成することによって実現されます。これはチェーン・オブ・ソート(CoT)プロンプティングとも呼ばれます。しかし、CoTに関する現在の研究のほとんどは言語モダリティに焦点を当てており、マルチモーダルなCoT推論を抽出するために、研究者はしばしばマルチモーダル-CoTパラダイムを使用します。マルチモーダル-CoTは、ビジョンや言語など、さまざまなモダリティの入力がある場合でも、多段階の問題を中間の推論プロセスに分割し、最終的な出力を生成します。マルチモーダル-CoTを実行する最も人気のある方法の1つは、LLMにCoTを実行する前に、複数のモダリティからの入力を単一のモダリティに組み合わせることです。しかし、この方法にはいくつかの欠点があります。1つは、データを1つのモダリティから別のモダリティに変換する際に生じる重要な情報の損失です。マルチモーダルなCoT推論を実現する別の方法は、ビジョンと言語のさまざまな特徴を組み合わせて、小さな言語モデルを微調整することです。

ただし、このアプローチの主な問題は、これらの言語モデルが幻覚的な推論パターンを生成する傾向があることであり、これが回答推論に大きな影響を与えます。そのようなエラーの影響を軽減するために、Amazonの研究者はビジュアル特徴を分離されたトレーニングフレームワークで組み合わせるMultimodal-CoTを提案しました。このフレームワークは、推論プロセスを2つのフェーズに分割します:根拠生成と回答推論。モデルは、ビジョンの側面を両方のステージに取り入れることで、より説得力のある議論を生成し、より正確な回答推論を作成するのに役立ちます。この研究は、異なるモダリティでのCoT推論を研究した最初のものです。Amazonの研究者によって提供された技術は、ScienceQAベンチマークで最先端のパフォーマンスを発揮し、GPT-3.5の正確さを16%上回り、人間のパフォーマンスを上回りました。

マルチモーダル回答CoTの推論と推論生成のステージは、同じモデルアーキテクチャを使用しており、入力と出力の種類が異なります。ビジョン-言語モデルの例を取ると、モデルは根拠生成の段階で視覚と言語の両ドメインのデータを受け取ります。根拠が生成されると、回答推論のステップで初期の言語入力に追加され、次のステージの言語入力のためのデータが作成されます。モデルは、更新されたデータを受け取り、所望の結果を生成するためにトレーニングされます。エンコーディング、インタラクション、デコーディングの3つの主要な機能を実行するトランスフォーマーベースのモデルが基盤となっています。要するに、言語テキストはTransformerエンコーダに供給され、テキスト表現が作成されます。このテキスト表現は、ビジョン表現と組み合わされ、Transformerデコーダに供給されます。

彼らの手法の有効性を評価するために、研究者はScienceQAベンチマークで多くのテストを実施しました。ScienceQAベンチマークは、注釈付き回答が含まれる21,000以上のマルチモーダルな科学の質問からなる大規模なデータセットです。研究者は、その手法がベンチマークで従来の最先端のGPT-3.5モデルを16%上回ると結論付けました。要するに、Amazonの研究者は、マルチモーダル-CoTを実行するためにビジョンと言語の表現を組み合わせるために言語モデルを微調整するという2段階のフレームワークを提案し、情報的な根拠を生成して最終回答を推論するモデルを生成します。モデルのGitHubリポジトリは以下からアクセスできます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Related articles

Discover more

AIニュース

「カリフォルニアが自動運転車に関するフラッドゲートを開放しました」

州の規制委員会の判決の結果、サンフランシスコの街には24時間365日、ロボタクシーが導入されます

機械学習

「切り分けて学ぶ」による機械学習におけるオブジェクトの状態合成の認識と生成

現実世界には、さまざまなサイズ、色合い、質感を持つ物体が存在します。視覚的な特性、一般的には状態や属性と呼ばれるもの...

AIテクノロジー

「AIサービスへの大胆な進出:億万長者ビンニー・バンサールの大局変革」

テクノロジーと電子商取引の世界では、Binny Bansalの名前はよく知られています。オンライン小売り大手Flipkartの共同創設者...

人工知能

LLMOPS vs MLOPS AI開発における最良の選択肢を選ぶ

はじめに 人工知能(AI)の開発が急速に進化する中で、効率的な運用手法の統合が重要となっています。このニーズに対応するた...

機械学習

CipherChatをご紹介します:安全なアライメントの一般化を非自然言語、具体的には暗号に対して体系的に検証するためのAIフレームワーク

I had trouble accessing your link so I’m going to try to continue without it. 人工知能(AI)システムは、大規模...

機械学習

言語モデルの未来:ユーザーエクスペリエンスの向上のためにマルチモダリティを取り入れる

人工知能は、非常に有益で効率的な大規模言語モデルの導入により進化しています。自然言語処理、自然言語生成、自然言語理解...