新しいAI研究が、転移学習のためのマルチタスクプロンプトチューニング(MPT)を紹介します
新しいAI研究はMPT(マルチタスクプロンプトチューニング)を紹介する
事前学習済み言語モデル(PLMs)は、フィネチューニングにより多くの下位NLPタスクで大幅に改善されています。現在のPLMsは数億のパラメータを含むことができますが、タスクごとのフルフィネチューニング(FT)の従来のパラダイムは、多数のタスクに拡張することが困難です。包括的なフィネチューニングに必要なより少ないパラメータを学習する必要性から、「パラメータ効率」のモデルチューニングに関する研究が急増しています。
PLMsを使用したパラメータ効率の高い転移学習において、最近はプロンプトチューニング(PT)が潜在的なオプションとして登場しています。PTは、トレーニング前に入力に調整可能な連続プロンプトベクトルを追加することで機能します。PLMの設定は固定され、PTは各タスクに対して限られた数のプロンプトベクトルのみを学習します。しかし、その驚異的な性能にもかかわらず、瞬間的なチューニングと完全なフィネチューニングの間にはまだ大きな差があります。また、この方法は初期化に非常に敏感であり、通常のフィネチューニング手続きよりも長いトレーニング時間を必要とします。
最近の研究では、他のジョブからプロンプトベクトルを再利用することでこれらの問題を解決する方法が提案されています。これらの戦略は、さまざまなソースタスクでソフトプロンプトをトレーニングすることから始まります。次に、これらの事前学習されたプロンプトを、(おそらく学習された)類似性尺度を使用してターゲットタスクのプロンプトのファインチューニングの出発点として使用します。
- ネゲヴのベン・グリオン大学の研究者たちは、社会的規範の違反を特定するAIシステムを設計しました
- 中国からの新しいAI研究は、機械学習の手法と質問を組み合わせることで、指導者と学生の関係のつながりに新たな次元を明らかにします
- 「人間の知能の解読:スタンフォードの最新のAI研究は、生来の数の感覚は学びのスキルなのか、自然の贈り物なのかを問いかける」
オハイオ州立大学、MIT-IBMワトソンAI研究所、マサチューセッツ工科大学の研究者は、マルチタスクプロンプトチューニング(MPT)を導入することで、この研究の一環をさらに発展させています。MPTは、マルチタスクデータを利用して、効率的にターゲットアクティビティに伝達できる単一のプロンプトを学習します。
共有プロンプト空間を学習するアイデアは簡単ですが、実際には非常に難しいことがあります。これは、さまざまなソースタスク間の類似性を習得しながら、その干渉を同時に減らす必要があるためです。研究者は、単にすべてのタスクでプロンプト行列を共有するのではなく、各ソースタスクのソフトプロンプトを共有行列と低ランクタスク固有行列の積として分解する方が成功すると見つけました。分解は、一貫したプロンプトチューニングを通じて獲得したソフトプロンプトからの情報を蒸留することによって教えられます。彼らは共通プロンプト行列に対して低ランクの乗算修正を実行し、ジョブ間を切り替えます。
様々なタスクの23のNLPデータセットに対する包括的なテストでは、提案された手法が最新のプロンプト転送手法を上回ることが示されています。T5-Baseを使用したMPTは、最も競争力のあるマルチタスクプロンプト転送ベースラインに比べて、SuperGLUEベンチマークで16.3%の改善を達成しています。一部の性能指標では、MPTはフルフィネチューニングを上回りますが、ジョブごとにわずか0.035%の設定可能なパラメータのみを使用しています。また、ターゲットタスクごとに4-32のラベルがある場合、MPTは少量のデータでも非常に成功することがわかっています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- RLHF(Reinforcement Learning from Human Feedback)において本当に強化学習(RL)は必要ですか?スタンフォード大学の新しい研究では、DPO(Direct Preference Optimization)を提案していますこれは、RLを使用せずに言語モデルを好みに基づいて訓練するためのシンプルなトレーニング方法です
- UCバークレーの研究者たちは、Gorillaという名前の、GPT-4を上回るAPIコールの記述において、Finetuned LLaMAベースのモデルを紹介しました
- 「CMUの研究者らが提案するGILL:LLMと画像エンコーダおよびデコーダモデルを統合するためのAIメソッド」
- マイクロソフトとコロンビア大学の研究者が提案する「LLM-AUGMENTER」は、ブラックボックスLLMに一連のプラグアンドプレイモジュールを追加するAIシステムです
- イタリアの新しいAI研究は、音楽合成と音源分離の両方が可能な拡散ベースの生成モデルを紹介しています
- マイクロソフトの研究者が提案するNUWA-XL:極長ビデオ生成のための新しい拡散オーバー拡散アーキテクチャ
- 新しいAI研究が「方向性刺激プロンプティング(DSP)」を導入:望ましい要約を生成するためにLLMをより適切に導くための新しいプロンプティングフレームワーク