強化学習:動的プログラミングとモンテカルロ法—パート2

強化学習:動的プログラミングとモンテカルロ法—パート2

マルコフ決定過程を解決するための2つのシンプルな反復的手法の紹介

UnsplashでのWil Stewartによる画像

前の記事(パート1)では、マルコフ決定過程(MDP)を強化学習(RL)の問題を解決するパラダイムとして定式化しました。ただし、議論された総合的なフレームワークは、MDPのシステマティックな解決方法について触れていませんでした。行列の逆行列などの線形技術の使用を除外し、MDPを解決するための反復的技術の可能性を簡単に提起しました。MDPのアイデアを再訪するには、以下のPart Iを参照してください:

強化学習:マルコフ決定過程—Part 1

強化学習のバックボーンであるマルコフ決定過程の紹介

pub.towardsai.net

RLに関するこの記事以降では、反復的な手法とMDPの解決策について議論します。具体的には、この記事では、MDPを解決するための2つの反復的手法、ダイナミックプログラミングとモンテカルロ法を紹介します。

1. ダイナミックプログラミング

まず、ダイナミックプログラミングについて説明します。ダイナミックプログラミングは、問題の構造の2つの特性を利用する反復的な解決手法です:

  • サブ問題が多くの回帰を行うことができる
  • 各回帰での解決策はキャッシュされ再利用できる

したがって、これは特にMDPの問題に適用されます。なぜなら、ベルマン方程式が状態価値関数V(s)の再帰的な分解を与えるからです。以下はV(s)のためのベルマン方程式の再訪です:

ただし、ダイナミックプログラミングの違いは、特定の方策πに対して、ベルマン方程式を使用して時間ステップtの隣接するV(s')を現在の状態V(s)の時間ステップt+1にマッピングしていることです。以下の図は同様の直感を与えます(以下のk変数は反復ステップです)。また、以下の反復は、ダイナミックプログラミングアルゴリズムの各状態で適用されます

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ビジネスを拡大するための25のChatGPTプロンプト」

「25個のChatGPTテンプレートのプロンプトをコピーして貼り付けすることで、あなたのビジネス(および収入)を次のレベルに引...

データサイエンス

「AIと倫理の架け橋:医療実施における包括的な解決策」

「この記事では、AIの倫理的な考慮事項について掘り下げ、医療の分野でAIの力を責任を持ってかつ公正に活用する方法について...

データサイエンス

LangChain:メモリ容量でパフォーマンスを向上させる

私は以前にLangChainに関する記事をすでに公開しており、ライブラリーとその機能を紹介しました今回は、インテリジェントチャ...

機械学習

聴覚処理の解読:深層学習モデルが脳内の音声認識とどのように類似しているか

研究によると、聴覚データを言語的表現に変換する計算は、声の知覚に関与しています。誰かが音声を聞くと、聴覚経路が活性化...

人工知能

私たちの早期警戒システムへのサポート

GoogleのYossi MatiasさんとWMOのインフラストラクチャー部門ディレクターであるAnthony Reaさんが「Early Warnings For All ...

人工知能

2023年10月:オクタが新しいアイデンティティイノベーションを発表して、AI時代のセキュリティを確保します

アイデンティティの脅威保護、AI開発者の生産性向上、パスワードレス認証、認証および資格情報の解決策