「Q-学習を用いたダイナミックプライシングのための強化学習」

強化学習によるダイナミックプライシングのQ学習

実践的なPythonの例を使ったQ学習の紹介

Exploring prices to find the optimal action-state values to maximize profit. Image by author.

目次

  1. はじめに
  2. 強化学習の基礎2.1 キーコンセプト2.2 Q関数2.3 Q値2.4 Q学習2.5 ベルマン方程式2.6 探索 vs. 活用2.7 Qテーブル
  3. 動的価格設定の問題3.1 問題の設定3.2 実装
  4. 結論
  5. 参考文献

1. はじめに

この記事では、強化学習の基本的な概念を紹介し、報酬と経験に基づいて情報を元にした意思決定を行うことで最適な方策を学習する手法であるQ学習について詳しく説明します。

また、ゼロから構築された実践的なPythonの例も共有します。具体的には、ビジネスの重要な側面である価格設定の技術をマスターするためにエージェントを訓練し、利益を最大化する方法を学習させます。

それでは、早速旅を始めましょう。

2. 強化学習の基礎

2.1 キーコンセプト

強化学習(RL)は、エージェントが試行錯誤を通じてタスクを達成するために学習する機械学習の分野です。

簡単に言うと、エージェントは報酬メカニズムを介して正反応または負反応に関連付けられたアクションを試みます。エージェントは報酬を最大化するように行動を調整し、最終的な目標を達成するための最適な行動を学習します。

具体例を通じてRLのキーコンセプトを紹介しましょう。簡易的なアーケードゲームを想像してみてください。ここでは、猫が迷路を進みながら宝物(ミルクのグラスと毛糸のボール)を集め、同時に工事現場を避けるというゲームです:

Image by author.
  1. エージェントはアクションの進行方向を選択する役割を持ちます。この例では、エージェントは猫の次の動きを決定するジョイスティックを操作するプレーヤーです。
  2. 環境は…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

AI研究

ストリートビューが救いの手を差し伸べる:ディープラーニングが安全な建物への道を開拓

Googleストリートビューなどで使用される画像は、フロリダ大学の人工知能助教授Chaofeng Wang氏の手によって新たな目的を持つ...

コンピュータサイエンス

「トップの生成AIプロジェクト」

急速に進化する技術のパノラマの中で、生成型AIプロジェクトの出現は、コンテンツの作成、体験、および相互作用の方法を再定...

機械学習

「LLaMA-v2-Chat対アルパカ:どのAIモデルを使用するべきですか?」

この記事は以下の質問に答えます:LLaMA-v2-Chat vs アルパカ、どちらを使うべきですか?両方のAIモデルの利点と欠点は何です...

機械学習

「革新的な機械学習モデルにより、脱炭素化触媒の評価時間が数カ月から数ミリ秒に短縮されました」

バイオマスは、植物、木材、農業廃棄物、その他の生物材料などの有機物を指し、再生可能エネルギー源として利用されることが...

データサイエンス

リトリーバル オーグメンテッド ジェネレーション(RAG)推論エンジンは、CPU上でLangChainを使用しています

「リトリーバル増強生成(RAG)は広範にカバーされており、特にチャットベースのLLMへの応用については詳しく語られています...