化学プロセス開発のためのモデルフリー強化学習

化学プロセス開発のモデルフリー強化学習

普遍的な化学プロセスオペレータへの取り組み

Alex Kondratievによる写真、Unsplashから

はじめに

プロセス開発設計最適化、および制御は、化学およびプロセスエンジニアリングにおける主な任務のいくつかです。具体的には、特定の目標(収率やスループットなど)を最大化し、潜在的な制約(入力濃度、流量、反応器容積、溶媒の沸点など)を尊重しながら、最適なレシピまたは適切な装置またはプロセスパラメータの構成を見つけることです(実験室実験を通じて)。これらのタスクを自動化することにより、例えば実験室のロボットを介して、多くの手作業を節約することができます。

最近の強化学習(RL)の進歩により、エージェントは複雑なタスクをマスターし、さまざまなゲームをプレイしたり、行列演算のためのより効率的な数学的手順を発見したりすることが明らかになりました。実験または数値シミュレーションから得られる運動学パラメータを用いることで、エージェントは最適な構成と合成レシピを見つけることができます。ただし、凸最適化とは異なり、アルゴリズム/モデルは直接プロセス制御に使用できます。このような実験は、メソッドのサンプル効率に応じて、コンピュータ上または直接実験室で行われることがあります。長期的には、これによりプロセス開発が(一部)自動化されるでしょう。この記事の目的は、パラセタモールの例を用いて、近接方策最適化(PPO)を使用して、これを説明することです。

問題の定義

ここでは、コンピュータプログラム、いわゆるエージェント、つまり普遍的な化学プロセスオペレータがあります。このオペレータは、化学操作、つまりアクションを実行できる環境に存在します。このようなアクションには、成分Aの投与、入出力フローの増減、温度の増減などが含まれます。エージェントがアクションを実行すると、特定の成分の濃度などの状態に応じて、新しい状態に移行します。

パラセタモール(PC)は、p-アミノフェノール(AP)酢酸無水物(AA)から合成されます(図1a参照)。既知の運動学に基づいて、このプロセスはモデル化され、環境を表すことができます。例えば、連続式攪拌槽反応器(CSTR)として図…に示されています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「OpenAIのAI検出ツールは、AIによって生成されたコンテンツの74%を検出できない」

OpenAIは、画期的な生成型AIチャットボットChatGPTの製造元であり、最近、AI分類ツールの提供を中止したことで話題となりまし...

機械学習

より強力な言語モデルが本当に必要なのでしょうか?

大規模な言語モデルはますます人気が高まっていますしかし、それらの開発には特定の課題にも直面することになりますGPTモデル...

人工知能

生成AI倫理' (Seisei AI Rinri)

生成型人工知能(AI)に関する大騒ぎがある中で、この変革的な技術を責任を持って実装する方法について、未解決の問題が増え...

機械学習

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を...

データサイエンス

私が通常のRDBMSをベクトルデータベースに変換して埋め込みを保存する方法

この記事では、一般的なRDBMSを完全に機能したベクトルデータベースに変換して、GenerativeAIアプリケーションの開発に埋め込...

AIニュース

Google Cloudがマッコーリー銀行のAIバンキング機能を強化するのを支援します

マッコーリーのバンキング&金融サービスグループは、人工知能(AI)と機械学習(ML)の力を結集し、銀行業界を変革するため...