効率的なディープラーニング:モデルの圧縮のパワーを解き放つ

効率的なディープラーニング:モデルの圧縮のパワーを解き放つ' The condensed version is '効率的なディープラーニング:モデルの圧縮のパワーを解き放つ

画像:著者によるもの

本番でのモデルの推論スピードを高速化する

はじめに

機械学習モデルが本番環境にデプロイされる際には、モデルのプロトタイプフェーズでは考慮されない要件を満たす必要がしばしばあります。たとえば、本番環境のモデルは、異なるユーザーからの多くのリクエストを処理する必要があります。したがって、インスタンスの待ち時間やスループットを最適化する必要があります。

  • 待ち時間:クリックしたリンクの後にウェブページが読み込まれるまでの時間など、タスクの完了にかかる時間です。何かを開始して結果を見るまでの待ち時間です。
  • スループット:一定の時間内にシステムが処理できるリクエストの数です。

つまり、機械学習モデルは予測を非常に高速化する必要があります。そのためには、モデル推論の速度を向上させるためのさまざまな技術があります。この記事では、最も重要なものを見てみましょう。

モデルの圧縮

モデルを小さくすることを目指す技術はモデル圧縮技術と呼ばれる一方、推論速度を向上させることに焦点を当てる技術はモデル最適化の範疇に入ります。しかし、モデルを小さくすることは推論速度の向上にも役立つことが多いため、これらの研究分野を明確に区別するのは非常に難しいです。

低ランク分解

これは最初に見る方法であり、実際に非常に研究されています。実際、最近ではこの分野に関する多くの論文が発表されています。

基本的なアイデアは、ニューラルネットワークの行列(ネットワークの層を表す行列)を次元が低い行列に置き換えることですが、実際には2次元以上の行列(テンソル)も存在するため、テンソルについて話すことがより正確です。これにより、ネットワークのパラメータが少なくなり、推論が高速化されます。

CNNネットワークでは、3×3の畳み込みを1×1の畳み込みに置き換えるというのが典型的な例です。このような技術は、SqueezeNetなどのネットワークで使用されています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ファッションにおけるGenAI | Segmind Stable Diffusion XL 1.0アプローチ

イントロダクション ファッション業界も例外ではなく、消費者の変化する好みに合わせて革新の最前線に留まる方法を模索してき...

AI研究

黄さんの法則に留意する:エンジニアたちがどのように速度向上を進めているかを示すビデオ

話の中で、NVIDIAのチーフサイエンティストであるビル・ダリー氏が、モーアの法則時代後のコンピュータパフォーマンスの提供...

AI研究

NVIDIAの最高科学者、ビル・ダリー氏がHot Chipsで基調講演を行う

ビル・ダリー(NVIDIAの研究部門の責任者であり、世界有数のコンピュータ科学者の一人)は、Hot Chipsという年次のプロセッサ...

人工知能

2023年10月:オクタが新しいアイデンティティイノベーションを発表して、AI時代のセキュリティを確保します

アイデンティティの脅威保護、AI開発者の生産性向上、パスワードレス認証、認証および資格情報の解決策

データサイエンス

ディープラーニングのマスタリング:分岐推定を使った非線形概算の芸術 パート1

過去の1年間で、私たちはディープラーニングの人気が爆発的に急増しているのを目撃してきましたGPT-4のような大規模な言語モ...

機械学習

より速い治療:Insilico Medicineが生成型AIを使用して薬剤開発を加速する方法

生成AIは比較的新しい家庭用語ですが、薬剤研究会社Insilico Medicineは、長年にわたってこれを使用して、深刻な疾患の新しい...