光を基にした機械学習システムは、より強力で効率的な大規模言語モデルを生み出す可能性がある

光を基にした機械学習システムは、効率的で強力な大規模言語モデルを生み出す可能性がある

MITシステムは、現行のシステムと比較して、エネルギー効率が100倍以上向上し、コンピュート密度が25倍向上することを示しています。

光に基づいたコンピュータシステムのアーティストによる描写。この技術に不可欠なマイクロンスケールのレーザーは、ChatGPTのような機械学習プログラムのパワーを活性化する役割を果たします。青い部分はそのレーザーを表しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Samet氏がACM SIGSPATIAL生涯影響力賞を受賞」

佐藤ハンアンは、ACMの特殊な関心事群であるSIGSPATIALから、初の終身功績賞を受賞しました

機械学習

‘LinkedInの仕事検索機能を支える埋め込みアーキテクチャの内部’

埋め込みは、最近の大型言語モデル(LLMs)の応用において最も重要な要素の一つとなっていますベクトルデータベースといった...

データサイエンス

「物理データを使用してコンピュータビジョンを再焦点化する」

「物理ベースのセンサーやシステムから収集されたメタデータを用いて従来のコンピュータビジョンデータを補完する方法を探索...

AIニュース

「AIがウクライナの戦場に参戦を望む!」

最近、ウクライナはAI企業のゴールドマインとなっています。世界のテック企業がウクライナに押し寄せ、革新的な人工知能(AI...

AI研究

MITによる新しい機械学習の研究は、大規模言語モデル(LLM)が空間と時間の概念を理解し表現する方法を示しています

大規模言語モデル(LLMs)は最近、驚くべきスキルを発揮しています。GPTのトランスフォーマーアーキテクチャに基づいて構築さ...

機械学習

「ロジスティック回帰:直感と実装」

ロジスティック回帰は、2つの異なるデータ属性の間の決定境界を学習できる基本的な二値分類アルゴリズムですこの記事では、理...