「光に基づくMLシステムは、より強力で効率的なLLMを生み出す可能性がある」

光に基づくMLシステムは、強力かつ効率的なLLMを生み出す可能性がある

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

新システムでは、チームは、機械学習のための最先端のデジタルコンピュータに比べて、100倍以上のエネルギー効率の改善と、25倍の計算密度の改善を報告しています。 ¶ クレジット:Ella Maru Studio

マサチューセッツ工科大学の研究者チームが開発した光ベースの機械学習システムは、ChatGPTのシステムを凌駕する可能性があり、同時により少ないエネルギーを消費します。

このコンパクトなアーキテクチャは、ドイツのテクニシェ・ウニヴェルシタート・ベルリンの研究者らによって開発された垂直面発光レーザーのアレイに基づいています。

このシステムは、数百のマイクロンスケールのレーザーと光の移動を利用して計算を行います。

研究者は、このシステムが携帯電話の顔認識システムやデータ通信で一般的に使用されているレーザーアレイに依存しているため、近い将来商業用にスケーリング可能であると述べています。

彼らは、このシステムが既存の機械学習モデルのパワーと計算密度に関して、現行の最先端スーパーコンピュータよりもエネルギー効率が100倍高く、計算密度が25倍高いことを発見しました。MITニュースの記事を参照

要約の著作権 © 2023 SmithBucklin、米国ワシントンD.C. SmithBucklinの画像

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

「巨大なコンピュータチップによって駆動されるA.I.スーパーコンピュータが稼働し始める」

新しいスーパーコンピュータは、シリコンバレーのスタートアップ企業Cerebrasによって作られ、A.I.ブームに伴うチップと計算...

AI研究

「Pythia 詳細な研究のための16個のLLMスイート」

Pythiaは、Eleuther AIによる16の大規模言語モデルのスイートですトレーニングとスケーリング中に自己回帰的な大規模言語モデ...

データサイエンス

Google AIがAdaTapeを導入:トランスフォーマーベースのアーキテクチャを持ち、適応的なテープトークンを通じてニューラルネットワークでの動的な計算を可能にする新しいAIアプローチ

人間は、さまざまな状況や条件に応じて思考や反応を適応させる能力を持っていますが、ニューラルネットワークは固定された関...

AIニュース

「AIディープフェイクがスロバキアの選挙でのディスインフォメーション(誤報)を広める」

週末に行われたスロバキアの選挙前のソーシャルメディアでの拡散されたディスインフォメーションは、人工知能(AI)によって...

機械学習

「Amazon Comprehend を使用して有害なコンテンツを検出しましょう」

「オンラインコミュニティは、ゲーム、ソーシャルメディア、eコマース、デート、eラーニングなどの業界全体にわたり、ユーザ...

AIニュース

「チャンドラヤーン3の着陸:AIとセンサーがISROの壮大な月探査を支援」

宇宙探査の魅惑的な広がりの中で、すべてのミッションは未知へのサイコロのような賭けです。インドの国立宇宙機関であるイン...