「光に基づくMLシステムは、より強力で効率的なLLMを生み出す可能性がある」

光に基づくMLシステムは、強力かつ効率的なLLMを生み出す可能性がある

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

新システムでは、チームは、機械学習のための最先端のデジタルコンピュータに比べて、100倍以上のエネルギー効率の改善と、25倍の計算密度の改善を報告しています。 ¶ クレジット:Ella Maru Studio

マサチューセッツ工科大学の研究者チームが開発した光ベースの機械学習システムは、ChatGPTのシステムを凌駕する可能性があり、同時により少ないエネルギーを消費します。

このコンパクトなアーキテクチャは、ドイツのテクニシェ・ウニヴェルシタート・ベルリンの研究者らによって開発された垂直面発光レーザーのアレイに基づいています。

このシステムは、数百のマイクロンスケールのレーザーと光の移動を利用して計算を行います。

研究者は、このシステムが携帯電話の顔認識システムやデータ通信で一般的に使用されているレーザーアレイに依存しているため、近い将来商業用にスケーリング可能であると述べています。

彼らは、このシステムが既存の機械学習モデルのパワーと計算密度に関して、現行の最先端スーパーコンピュータよりもエネルギー効率が100倍高く、計算密度が25倍高いことを発見しました。MITニュースの記事を参照

要約の著作権 © 2023 SmithBucklin、米国ワシントンD.C. SmithBucklinの画像

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「LLaSMと出会う:音声と言語の指示に従うクロスモーダルな対話能力を持つエンドツーエンドで訓練された大規模なマルチモーダル音声言語モデル」

音声はトーンなどの意味論的およびパラ言語的情報を含むため、書き込みよりも多くの情報を伝えます。さらに、話すことは人々...

データサイエンス

「UMDが主導する研究がモンゴメリー郡の起訴データダッシュボードを支える」

メリーランド大学の研究者が、モンゴメリー郡検察官事務所を支援し、州初の起訴データダッシュボードを導入し、事件の処理方...

データサイエンス

Voxel51 は、コンピュータビジョンデータセット分析のための Python コードを生成するために GPT-3.5 の能力を活用する AI アシスタントである VoxelGPT をオープンソース化しました

データ中心のコンピュータビジョンと機械学習ソフトウェアの有名なイノベーターであるVoxel51は、最近VoxelGPTを立ち上げ、コ...

AI研究

ウィスコンシン大学とバイトダンスの研究者は、PanoHeadを紹介しますこれは、単一のビュー画像のみでビュー一貫性のあるフルヘッド画像を合成する、初の3D GANフレームワークです

コンピュータビジョンとグラフィックスでは、写真のような写実的な肖像画像合成が常に強調されており、仮想アバター、テレプ...

機械学習

「Mini-DALLE3と出会おう:大規模な言語モデルによるテキストから画像へのインタラクティブアプローチ」

人工知能コンテンツ生成の急速な進化、特にテキストから画像へのモデル(T2I)の進展により、高品質で多様性に富み創造的なAIに...