一貫性のあるAIビデオエディターが登場しました:TokenFlowは、一貫性のあるビデオ編集のために拡散特徴を使用するAIモデルです

一貫性のあるAIビデオエディター、TokenFlowは拡散特徴を使用するAIモデルです

拡散モデルは、この時点でお馴染みのものです。過去の1年間、AIの領域で鍵となるトピックでした。これらのモデルは、画像生成において驚くべき成功を収め、まったく新しいページを開きました。

私たちは、テキストから画像を生成する時代にいますし、それらは日々改善されています。MidJourneyなどの拡散型生成モデルは、大規模な画像テキストデータセットを使用しており、テキストの提示に基づいて多様で現実的な視覚コンテンツを生成する能力を示しています。

テキストから画像へのモデルの急速な進化は、画像編集とコンテンツ生成の著しい進展をもたらしました。現在、ユーザーは生成された画像と実際の画像のさまざまな要素を制御することができます。これにより、アイデアをよりよく表現し、手作業の描画に数日間費やす代わりに、比較的迅速な方法で結果を示すことができます。

ただし、これらの画期的な進展をビデオの領域に適用する場合は、状況は異なります。ここでは進展が比較的遅いです。テキストからビデオを生成する大規模な生成モデルは登場しましたが、解像度、ビデオの長さ、および表現できるビデオのダイナミクスの複雑さに関してはまだ制限があります。

ビデオ編集に画像拡散モデルを使用する際の主な課題の1つは、編集されたコンテンツがすべてのビデオフレームで一貫していることを確保することです。画像拡散モデルに基づく既存のビデオ編集方法は、自己注意モジュールを複数のフレームに拡張することでグローバルな外観の整合性を実現していますが、望ましいレベルの時間的一貫性を達成するのは難しいことがよくあります。これにより、プロフェッショナルや準プロフェッショナルは、追加の手作業を含む緻密なビデオ編集手順に頼ることがあります。

それでは、TokenFlowに会いましょう。これは、事前学習されたテキストから画像へのモデルの力を活用して、自然なビデオのテキストによる編集を可能にするAIモデルです。

TokenFlowの主な目標は、入力テキストプロンプトで表現される目標の編集に従って、元のビデオの空間レイアウトとモーションを維持しながら、高品質のビデオを生成することです。

TokenFlowはテキストプロンプトを使用して自然なビデオを編集できます。出典:https://arxiv.org/pdf/2307.10373.pdf

TokenFlowは、時間の一貫性の解決を目指して導入されました。それは編集されたビデオの特徴がフレーム間で一貫していることを保証するために、元のビデオのダイナミクスに基づいて編集された拡散特徴を伝播させることによって実現されます。これにより、追加のトレーニングや微調整の必要なしに、最先端の画像拡散モデルの生成事前知識を活用することができます。TokenFlowは、既存の拡散型画像編集手法ともシームレスに連携します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

このAIペーパーは、東京大学で深層学習を超新星シミュレーションの問題に応用しました

東京大学の研究者チームは、3D-Memory In Memory (3D-MIM) と呼ばれる深層学習モデルを開発しました。このモデルは、超新星(S...

人工知能

AIが開発者の生活を簡単にする10の方法

AIは、テストやバグ修正などの繰り返しのタスクを自動化し、開発者がより創造的で戦略的な作業に集中することができるように...

機械学習

ディープラーニングによる触媒性能の秘密の解明:異種触媒の高精度スクリーニングのための「グローバル+ローカル」畳み込みニューラルネットワークのディープダイブ

触媒の表面の形状が、触媒のさまざまな特性によって特定の化学反応に影響を与えるため、私たちは表面化学でこれらの効果を研...

機械学習

「RecMindと出会ってください:推薦タスクのための推論、行動、およびメモリを組み合わせた大規模言語モデル技術によって駆動される自律型の推薦エージェント」

人工知能とディープラーニングの人気が高まるにつれて、ほぼすべてのアプリケーションがAIの能力を利用して作業を進めていま...

データサイエンス

チャットボットと個人情報の共有の危険性-注意が必要です

AI革命の始まり以来、ChatGPTやBardのようなチャットボットは、私たちにとって欠かせないツールとなり、もはや切り離せない存...

AI研究

スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています

ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプ...