ローカル vs グローバル予測 知っておくべきこと

ローカル vs グローバル予測 知るべきこと

ローカルとグローバルアプローチの時系列予測の比較:LightGBMとオーストラリア観光データセットを使ったPythonデモ

Image by Silke from Pixabay

Pythonの例へジャンプするには、ここをクリックしてください!

ローカル予測とは何ですか?

ローカル予測は、各時系列に対して独立した予測モデルを個別にトレーニングするという伝統的なアプローチです。古典的な統計モデル(指数平滑法、ARIMA、TBATSなど)は通常、このアプローチを使用しますが、標準的な機械学習モデルも特徴量エンジニアリングのステップを介して使用できます。

ローカル予測には利点があります:

  • 理解と実装が直感的です。
  • それぞれのモデルを個別に調整できます。

しかし、いくつかの制約もあります:

  • 「冷たいスタート」問題があります。各時系列に対してモデルパラメータを信頼性高く推定するためには、相対的に大量の過去データが必要です。また、新しい製品の需要など、新しいターゲットを予測することはできません。
  • 関連する時系列間の共通性や依存関係(横断的または階層的関係など)を捉えることができません。
  • 多くの時系列を持つ大規模なデータセットにスケールするのは難しく、各ターゲットに対して別々のモデルを適合させ、維持する必要があります。

グローバル予測とは何ですか?

Image by PIRO from Pixabay

グローバル予測は、複数の時系列を使用して単一の「グローバル」予測モデルをトレーニングするより現代的なアプローチです。これにより、より大きなトレーニングセットを持ち、ターゲット間で共有される構造を活用して複雑な関係を学習し、最終的にはより良い予測が可能となります。

グローバル予測モデルの構築には、以下のような特徴量エンジニアリングのステップが一般的に含まれます:

  • ターゲットの遅延値
  • 時間ウィンドウ内のターゲットの統計(例:…)

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ムーバブルインクのCEO兼共同創設者であるヴィヴェク・シャルマ氏についてのインタビュー・シリーズ

ビヴェクは2010年にムーバブルインクを共同設立し、急速な成長を遂げながら、600人以上の従業員を擁し、世界有数の革新的なブ...

データサイエンス

「Adam Ross Nelsonによる自信のあるデータサイエンスについて」

データサイエンスの中で新たな分野が現れ、研究内容が理解しにくい場合は、専門家や先駆者と話すのが最善です最近、私たちは...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

人工知能

「マーク・A・レムリー教授による生成AIと法律について」

データサイエンス内で新しい分野が現れ、研究内容が理解しにくい場合は、専門家やパイオニアと話すことが最善です最近、私た...

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

人工知能

「リオール・ハキム、Hour Oneの共同創設者兼CTO - インタビューシリーズ」

「Hour Oneの共同創設者兼最高技術責任者であるリオール・ハキムは、専門的なビデオコミュニケーションのためのバーチャルヒ...