ローカルで質問応答(QA)タスク用にLLMを微調整する方法

ローカルでQAタスク用にLLMを微調整する方法

カスタムデータから情報を抽出するための実践的なステップバイステップガイド:質問による

質問応答タスクには3つの主要なタイプがあります。

抽出型QA:システムが与えられたテキスト(入力テキスト)から質問の答えを抽出するタスクです。これは最も一般的なQAシステムの形式であり、AlexaやGoogle検索などの一般的な目的の自動化システムの一部です。

オープン生成型QA:システムが自然言語で回答を生成するタスクです。回答は純粋な情報抽出よりも自然な感じにすることに焦点があります。ただし、オープン生成型QAタスクではコンテキストが提供される必要があり、回答はコンテキストから生成されます(ほとんどの場合はホールシネーションを覚えておいてください)

クローズド生成型QA:これはコンテキストが提供されず、回答がモデルから純粋に生成されるタスクです。

Photo by Severin Höin on Unsplash

抽出型QAの実践的なガイド

今日は、独自のカスタムデータを使用してモデルを微調整する方法について簡単なウォークスルーを行います。私は独自のデータを生成してモデルを微調整することを支持しています!では、始めましょう

  1. トレーニング用のデータを作成する方法
  2. 適切な形式に変換する方法-前処理
  3. トークン化する方法
  4. コンピューターを使用して微調整する方法
  5. ボーナス- hugging faceのようなクラウドAPIを微調整する方法

私はこのチュートリアルを書き直す必要がありました。HuggingFaceのドキュメントはかなり古く、依存関係が壊れています。彼らのチュートリアルのすべての問題を修正し、簡単にフォローできる完全な動作バージョンを共有しました。乾杯!

カスタムデータの作成

例としてSQuADデータを使用します。SQuAD(Stanford Question Answering Dataset)について詳しくはこちらをご覧ください。

この実験をJupyter Notebook/Ipython notebookで実行していることを前提とします。

データセットをインストールします(データの見た目を確認できるため)

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...

AIテクノロジー

アンソニー・グーネティレケ氏は、Amdocsのグループ社長であり、テクノロジー部門および戦略部門の責任者です- インタビューシリーズ

アンソニー・グーネティレーケは、Amdocsでグループ社長、テクノロジーと戦略担当です彼と企業戦略チームは、会社の戦略を策...

人工知能

Aaron Lee、Smith.aiの共同設立者兼CEO - インタビューシリーズ

アーロン・リーさんは、Smith.aiの共同創業者兼CEOであり、AIと人間の知性を組み合わせて、24時間365日の顧客エンゲージメン...

人工知能

「クリス・サレンス氏、CentralReachのCEO - インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクラ...

データサイエンス

「David Smith、TheVentureCityの最高データオフィサー- インタビューシリーズ」

デビッド・スミス(別名「デビッド・データ」)は、TheVentureCityのチーフデータオフィサーであり、ソフトウェア駆動型のス...

人工知能

「15Rockの共同創業者兼CEO、ガウタム・バクシ氏によるインタビューシリーズ」

「ガウタム・バクシは、気候リスク管理とアドバイザリーサービスのグローバルリーダーである15Rockの共同創設者兼CEOですガウ...