ロジスティック回帰係数の解釈方法

ロジスティック回帰係数の解釈方法

ロジスティック回帰係数の平均余剰効果の計算

Image by Dominika Roseclay on Pexels.com

ロジスティック回帰が好きだけど、対数変換を伴う解釈が嫌いですか?まあ、あなたがいい仲間にいるとは言えませんが、私があなたの仲間だと言えます!

この記事では、ロジスティック回帰係数の解釈について詳しく説明します。以下はアウトラインです:

  1. 線形回帰係数の解釈
  2. ロジスティック回帰係数の解釈の難しさ
  3. ロジスティック回帰係数の解釈方法
  4. statsmodelsパッケージを使用した平均余剰効果の計算
  5. 結論

線形回帰係数の解釈

統計の初歩的な知識を持つ多くの人々は、線形回帰係数の解釈方法を完全に理解しています。もしそうであるなら、ロジスティック回帰係数について議論する部分に進むことを考えるかもしれません。

線形回帰係数の解釈は非常にシンプルで簡単です。解釈の簡単さは、より洗練されたアルゴリズムの登場にもかかわらず、線形回帰が非常に人気のあるツールである理由の1つです。

単回帰(入力変数が1つの線形回帰)は次のような形式を取ります:

私たちは主にB₁の解釈に興味があります。線形回帰では、この解釈は簡単です。xが1単位変化すると、yがB₁変化することが期待されます。この関係を「平均余剰効果」とも言います。

シミュレーションを使用してB₁をどのように解釈できるかの例を見てみましょう。シミュレーションは、データサイエンスのツール/アプローチをテストするための素晴らしいツールです。基準の真実を作成し、それを特定できるかどうかを見ることができます。

以下のコードでは、30,000行のx値をシミュレーションしています。x値は、私たちが選んだパラメータ(この場合は平均値2と標準偏差0.2)を持つ正規分布からサンプリングすることでシミュレーションします。次に、xに0.16のシミュレートされた影響を乗じてyをシミュレートし、ランダムなエラーを追加します…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

AIニュース

Q&A:ブラジルの政治、アマゾンの人権、AIについてのGabriela Sá Pessoaの見解

ブラジルの社会正義のジャーナリストは、MIT国際研究センターのフェローです

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

データサイエンス

「David Smith、TheVentureCityの最高データオフィサー- インタビューシリーズ」

デビッド・スミス(別名「デビッド・データ」)は、TheVentureCityのチーフデータオフィサーであり、ソフトウェア駆動型のス...

機械学習

3つの質問:大規模言語モデルについて、Jacob Andreasに聞く

CSAILの科学者は、最新の機械学習モデルを通じた自然言語処理の研究と、言語が他の種類の人工知能をどのように高めるかの調査...

人工知能

エンテラソリューションズの創設者兼CEO、スティーブン・デアンジェリス- インタビューシリーズ

スティーブン・デアンジェリスは、エンタラソリューションズの創設者兼CEOであり、自律的な意思決定科学(ADS®)技術を用いて...