メトリクス層:すべてのKPI定義の唯一の真実の源

メトリクス層:唯一の真実の源

Midjourneyで生成された画像

なぜメトリクスレイヤーを導入することで、組織内でのデータに基づいた洞察をより強固にすることができるのかを学びましょう!

メトリクスレイヤーは、主要なパフォーマンス指標を一元化し、分析し、直感的な方法で可視化することで、組織が貴重な洞察を引き出し、データに基づいた意思決定を推進するためのフレームワークです。

この記事では、メトリクスレイヤーの重要性、その利点、セマンティクスレイヤーとの主な違い、および成功した導入のための要件について探っていきます。

メトリクスレイヤーとは何ですか?

メトリクスレイヤー(またはメトリクスストア、ヘッドレスBIとも呼ばれます)は、企業がメトリクスの計算方法を統一するためのフレームワークです。組織内で使用されるKPI(またはメトリクス、これらの用語は同義で使用されます)の定義において、真実の唯一の情報源として機能します。

💡 ボーナストリビア:気になるかもしれませんが、「ヘッドレスBI」という用語は、これらのソリューションがAPIに接続してメトリクスにアクセスするためのさまざまなBIツールを可能にすることから派生しています。結果として、ツールを交換する柔軟性を提供しながら、メトリクスの定義の整合性を維持します。

本質的には、メトリクスレイヤーの概念はまったく新しいものではありません。例えば、既にプロジェクトのコードベースをGitでバージョン管理する中央リポジトリに保存しています。同様に、組織のデータウェアハウスやデータレイクは、すべてのデータの真実の唯一の情報源として機能します。同様に、メトリクスレイヤーは組織内で使用されるすべてのKPIの定義の真実の唯一の情報源として機能します。

下の図に示されているように、メトリクスレイヤーはデータウェアハウス(またはデータソースとも言えます)と、これらのメトリクスを消費するすべての関連アプリケーション(ダッシュボード、レポート、AIモデルなど)の間に存在する必要があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

3つの質問:大規模言語モデルについて、Jacob Andreasに聞く

CSAILの科学者は、最新の機械学習モデルを通じた自然言語処理の研究と、言語が他の種類の人工知能をどのように高めるかの調査...

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...

人工知能

アーティスの創設者兼CEO、ウィリアム・ウーによるインタビューシリーズ

ウィリアム・ウーは、Artisseの創設者兼CEOであり、ユーザーの好みに基づいて写真を精密に変更する技術を提供していますそれ...

人工知能

「クリス・サレンス氏、CentralReachのCEO - インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクラ...

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...

人工知能

ムーバブルインクのCEO兼共同創設者であるヴィヴェク・シャルマ氏についてのインタビュー・シリーズ

ビヴェクは2010年にムーバブルインクを共同設立し、急速な成長を遂げながら、600人以上の従業員を擁し、世界有数の革新的なブ...