マイクロソフトの研究者がKOSMOS-2を紹介:視覚世界に根付くことができるマルチモーダルな大規模言語モデル

マイクロソフトの研究者がKOSMOS-2を紹介:視覚世界に根付くマルチモーダルな言語モデル

マルチモーダル大規模言語モデル(MLLMs)は、言語、ビジョン、ビジョン言語のタスクを含むさまざまな活動で一般的なインターフェースとしての成功を示しています。ゼロショットおよびフューショットの条件下では、MLLMsはテキスト、画像、音声などの一般的なモダリティを知覚し、自由な形式のテキストを使用して回答を生成することができます。本研究では、マルチモーダルな大規模言語モデルに自己を基礎付ける能力を付与します。ビジョン言語の活動では、基礎付け能力はより実用的かつ効果的な人間-AIインターフェースを提供することができます。モデルは、地理座標と一緒にその画像領域を解釈することができ、ユーザーが長いテキストの説明を入力する代わりに、アイテムや領域を画像上で直接指すことができます。

図1:KOSMOS-2を使用して生成された選択されたサンプルが表示されます。ビジュアル基礎付け、基礎付け質問応答、バウンディングボックスを使用したマルチモーダル参照、基礎付け画像キャプション、ビジュアル基礎付けなどがあります。

モデルの基礎付け機能は、視覚的な応答(つまり、バウンディングボックス)の提供も可能にし、参照表現の理解などの他のビジョン言語のタスクを支援することができます。テキストベースの応答と比較して、視覚的な応答はより正確で、共参照の曖昧さを解消します。結果として得られる自由形式のテキスト応答の基礎付け能力は、名詞句や参照表現などを画像領域に関連付けて、より正確で情報量のある応答を生成します。Microsoft Researchの研究者は、基礎付け機能を備えたKOSMOS-1をベースにしたマルチモーダルな大規模言語モデルKOSMOS-2を紹介しています。次単語予測タスクを使用して、Transformerに基づく因果的言語モデルKOSMOS-2をトレーニングします。

彼らは、基礎付けの潜在能力を十分に活用するために、基礎付けられた画像テキストのペアデータセットをウェブスケールで構築し、KOSMOS-1のマルチモーダルコーパスに統合します。LAION-2BおよびCOYO-700Mからの画像テキストの一部のペアリングが、基礎付けられた画像テキストのペアの基盤となります。彼らは、キャプションから名詞句や参照表現などのテキストスパンを抽出し、それらのオブジェクトや領域のバウンディングボックスなどの空間的な位置に接続するためのパイプラインを提供します。バウンディングボックスの地理座標を位置トークンの文字列に変換し、それらを対応するテキストスパンの後に追加します。データ形式は、画像の要素をキャプションにリンクする「ハイパーリンク」として機能します。

実験の結果、KOSMOS-2は、基盤タスク(フレーズの基盤と参照表現の理解)および参照タスク(参照表現の生成)だけでなく、KOSMOS-1で評価された言語およびビジョン言語のタスクでも競争力を持っています。図1は、基礎付け機能を含めることで、KOSMOS-2を基盤とする画像キャプションとビジュアル質問応答をはじめとする追加のダウンストリームタスクに利用する方法を示しています。GitHubでオンラインデモが利用可能です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「2024年にデータサイエンティストになるためのトップ10のKaggle機械学習プロジェクト」

「トップ10のKaggle機械学習プロジェクトでマスターデータサイエンスを学び、データサイエンティストになろう」

人工知能

AIの今週、8月7日:ジェネレーティブAIがJupyterとStack Overflowに登場• ChatGPTのアップデート

「This Week in AI」はVoAGIで提供される、人工知能の最新情報をまとめた週刊記事です最新のヘッドラインニュースや学術論文...

機械学習

「Amazon SageMakerを使用して数百のモデルにスケールされたファウンデーションモデルの推論 - パート1」

「ファンデーションモデル(FM)の民主化が一般化し、AIを活用したサービスへの需要が増加するにつれ、ソフトウェアプロバイ...

AI研究

計算機の進歩により、研究者はより高い信頼性で気候をモデル化することができるようになります

研究者たちは、計算リソースと正確な雲モデリングをバランスさせることによって気候モデリングを進歩させることができるアル...

AI研究

AIの汎化ギャップに対処:ロンドン大学の研究者たちは、Spawriousという画像分類ベンチマークスイートを提案しましたこのスイートには、クラスと背景の間に偽の相関が含まれます

人工知能の人気が高まるにつれ、新しいモデルがほぼ毎日リリースされています。これらのモデルには新しい機能や問題解決能力...