ペンシルベニア大学の研究者たちは、腎臓のマッチングを改善し、移植片の失敗リスクを減らすための機械学習戦略の開発を行っています

ペンシルベニア大学の研究者は、腎臓マッチングの改善と移植片の失敗リスク削減のために機械学習戦略を開発しています

AIは、遺伝子の特定の変異を分析することにより、腎移植のリスクを最小化することで、人々に希望の光をもたらしています。腎移植におけるグラフトの失敗リスクの評価は、従来、HLA(ヒト白血球抗原)の不一致に基づいて行われてきました。ペンシルベニア大学の研究チームは、アミノ酸の不一致(AA-MMs)とグラフトの失敗の可能性との間に隠れた関連性を明らかにするための革新的な機械学習アルゴリズムを探求しました。

彼らの手法であるFIBRES(リスク分類のための特徴の含有ビンエボルバー)は、進化的アルゴリズムを利用してAA-MMsのビンを自動的に構築し、ビンの構成に関する仮定を最小限に抑えます。これにより、移植ペアをグラフトの生存リスクの高いグループと低いグループに効果的に分類することができます。FIBRESの手法を用いて、Scientific Registry of Transplant Recipients(SRTR)のデータセットからの166,754件の脱死者の腎移植データセットを分析した結果、伝統的な手法のグラフトの失敗リスクの制限が明らかになりました。アミノ酸の可変性の役割を強調し、FIBRESが低リスク患者の数を2倍以上特定できることが示されました。

FIBRESは進化的アルゴリズムを利用して、グラフトの失敗リスクの分類のためのAA-MMsのビンの適応度を反復的に最適化します。より高いパフォーマンスのビンを「親」として選択し、ビン内のAA位置を「交差」(つまり、交差)および「突然変異」(つまり、置換、追加、削除)することで、新しい子孫ビンを生成します。FIBRESは「リスク層の最小値」を組み込んで、結果の統計的信頼性を確保します。

この手法は、3つの分析で応用されています:(1)5つのHLA遺伝子座全体でAA-MMsを使用してビンを構築し、リスク分類を比較する、(2)各HLAごとにAA-MMsをビン分けする、および(3)交差検証を使用してパフォーマンスを評価する。これにより、0- ABDR抗原不一致と比較して、リスク分類の向上が実現されました。AA-MMの評価によると、腎移植の24.4%が低リスクであり、0-ABDRの場合は9.1%でした。交差検証は、FIBRESのビンリスク予測の一般化を示し、その堅牢性を確認しました。

研究者たちは、FIBRESがリスクに影響を与えるAA-MMをより包括的に決定できる可能性を強調しました。ただし、より大きなデータセットが必要です。将来的には、研究者たちは制限に対処するために、(1)追加のHLA遺伝子座へのビン分けの拡張、(2)最初の移植と再移植の受取人の結果の比較、および(3)FIBERSの適切なビンを最適化して、ドナー/受取人のペアを任意の数のリスクグループに分類し、グループのカットオフを学習し、AA-MMの重みを学習して、特定のMMの重要性を推測することを目指しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Pymcと統計モデルを記述するための言語の紹介」

「ベイズ推論のほとんどの例がそれが何であるかを誤解している理由についての前回の記事では、ベイズ統計の初心者の間で一般...

データサイエンス

2023年に知っておくべきトップ10のパワフルなデータモデリングツール

イントロダクション データ駆動型の意思決定の時代において、競争力を維持するために正確なデータモデリングツールを持つこと...

機械学習

「AWSは、人工知能、機械学習、生成AIのガイドを提供しており、AI戦略を計画するための新しい情報を提供しています」

人工知能(AI)と機械学習(ML)のブレークスルーは、数ヶ月間の間、見出しを賑わせてきました - そしてその理由は十分にある...

AI研究

スタンフォード大学、コーネル大学、オックスフォード大学の新しいAI研究は、単一の画像のわずかなインスタンスからオブジェクトの固有性を発見する生成モデルを紹介しています

バラの本質は、その独特の形状、質感、および材料組成で構成されています。これを使用して、さまざまな位置で、さまざまな形...

人工知能

「物理的な制約が脳のようなAIの進化を促す」

画期的な研究において、ケンブリッジの科学者たちは人工知能に対して新たなアプローチを取り、物理的な制約がAIシステムの発...

AI研究

ペンシルバニア大学の研究者が、軽量で柔軟、モデルに依存しないオープンソースのAIフレームワーク「Kani」を導入し、言語モデルアプリケーションの構築を行います

大規模言語モデルの応用は人気が高まっています。その驚異的な能力により、ますます洗練されてきています。ツールの使用追跡...