ペンシルベニア大学の研究者たちは、腎臓のマッチングを改善し、移植片の失敗リスクを減らすための機械学習戦略の開発を行っています
ペンシルベニア大学の研究者は、腎臓マッチングの改善と移植片の失敗リスク削減のために機械学習戦略を開発しています
AIは、遺伝子の特定の変異を分析することにより、腎移植のリスクを最小化することで、人々に希望の光をもたらしています。腎移植におけるグラフトの失敗リスクの評価は、従来、HLA(ヒト白血球抗原)の不一致に基づいて行われてきました。ペンシルベニア大学の研究チームは、アミノ酸の不一致(AA-MMs)とグラフトの失敗の可能性との間に隠れた関連性を明らかにするための革新的な機械学習アルゴリズムを探求しました。
彼らの手法であるFIBRES(リスク分類のための特徴の含有ビンエボルバー)は、進化的アルゴリズムを利用してAA-MMsのビンを自動的に構築し、ビンの構成に関する仮定を最小限に抑えます。これにより、移植ペアをグラフトの生存リスクの高いグループと低いグループに効果的に分類することができます。FIBRESの手法を用いて、Scientific Registry of Transplant Recipients(SRTR)のデータセットからの166,754件の脱死者の腎移植データセットを分析した結果、伝統的な手法のグラフトの失敗リスクの制限が明らかになりました。アミノ酸の可変性の役割を強調し、FIBRESが低リスク患者の数を2倍以上特定できることが示されました。
FIBRESは進化的アルゴリズムを利用して、グラフトの失敗リスクの分類のためのAA-MMsのビンの適応度を反復的に最適化します。より高いパフォーマンスのビンを「親」として選択し、ビン内のAA位置を「交差」(つまり、交差)および「突然変異」(つまり、置換、追加、削除)することで、新しい子孫ビンを生成します。FIBRESは「リスク層の最小値」を組み込んで、結果の統計的信頼性を確保します。
- バイトダンスとCMUの研究者は、AvatarVerseを紹介しますテキストの説明とポーズガイダンスの両方で制御される高品質な3Dアバターを生成するための新しいAIパイプラインです
- 中国からの新しいAI研究が、RecycleGPTを紹介しましたRecycleGPTは、完全なモデルを複数のステップで実行せずに、事前生成されたモデルの状態をリサイクルすることで、高速なデコーディングスピード(1.4倍)を持つ生成言語モデルです
- 研究者たちは、肩越しに画面をのぞき見する人々から身を守るためのスクリーン保護システムを開発しました
この手法は、3つの分析で応用されています:(1)5つのHLA遺伝子座全体でAA-MMsを使用してビンを構築し、リスク分類を比較する、(2)各HLAごとにAA-MMsをビン分けする、および(3)交差検証を使用してパフォーマンスを評価する。これにより、0- ABDR抗原不一致と比較して、リスク分類の向上が実現されました。AA-MMの評価によると、腎移植の24.4%が低リスクであり、0-ABDRの場合は9.1%でした。交差検証は、FIBRESのビンリスク予測の一般化を示し、その堅牢性を確認しました。
研究者たちは、FIBRESがリスクに影響を与えるAA-MMをより包括的に決定できる可能性を強調しました。ただし、より大きなデータセットが必要です。将来的には、研究者たちは制限に対処するために、(1)追加のHLA遺伝子座へのビン分けの拡張、(2)最初の移植と再移植の受取人の結果の比較、および(3)FIBERSの適切なビンを最適化して、ドナー/受取人のペアを任意の数のリスクグループに分類し、グループのカットオフを学習し、AA-MMの重みを学習して、特定のMMの重要性を推測することを目指しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- このAI研究は、多モーダル大規模言語モデル(LLM)の言語生成能力を受け継ぐ大規模言語指示セグメンテーションアシスタントであるLISAを紹介しています
- 「AIがPowerPointと出会う」
- 腫瘍の起源の解読:MITとDana-Farber研究者が機械学習を活用して遺伝子配列を分析する方法
- AIは人間過ぎるようになったのでしょうか?Google AIの研究者は、LLMsがツールのドキュメントだけでMLモデルやAPIを利用できるようになったことを発見しました!
- 「UCLA研究者がGedankenNetを紹介:物理法則や思考実験から学ぶ自己教示AIモデルが計算機画像処理を進化させる」
- Google AI Researchは、正確な時空間の位置情報と密に関連付けられた意味的に正しい豊富なビデオの説明を取得する注釈手法であるVidLNsを提案しています
- ETHチューリッヒの研究者が、バイオミメティックな腱駆動式ファイブハンドを紹介:高次元自由度の3Dプリンタ対応設計で、器用な手の回転スキルを持つ